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Communications

Should scientists be required to use a model- based solution  
to adjust for possible distance- based detectability bias?

RichaRd L. hutto
1

Division of Biological Sciences, University of Montana, 32 Campus Drive # 4824, Missoula, MT 59812 USA

Abstract.   The most popular method used to gain an understanding of population trends or 
of differences in bird abundance among land condition categories is to use information derived 
from point counts. Unfortunately, various factors can affect one’s ability to detect birds, and 
those factors need to be controlled or accounted for so that any difference in one’s index among 
time periods or locations is an accurate reflection of differences in bird abundance and not 
differences in detectability. Avian ecologists could use appropriately sized fixed- area surveys to 
minimize the chance that they might be deceived by distance- based detectability bias, but the 
current method of choice is to use a modeling approach that allows one to account for distance- 
based bias by modeling the effects of distance on detectability or occupancy. I challenge the 
idea that modeling is the best approach to account for distance- based effects on the detectabil-
ity of birds because the most important distance- based modeling assumptions can never be 
met. The use of a fixed- area survey method to generate an index of abundance is the simplest 
way to control for distance- based detectability bias and should not be universally condemned 
or be the basis for outright rejection in the publication process.
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intRoduction

Numerous factors can affect one’s ability to detect a 
bird that is within detection range, and differences in 
detectability among treatment categories or time periods 
can introduce a detectability bias if not controlled. These 
include factors such as the effective area surveyed, time 
of day, time of season, time of year, wind conditions, 
rain conditions, humidity, temperature, cloud cover, 
noise levels, clothing color, observer skill, observer 
behavior, and vegetation structure, among others (e.g., 
Ralph and Scott 1981). If the value of any potential 
source of bias is not equal among categories being com-
pared (e.g., among vegetation types) or not controlled 
after the fact through statistical means, then there is a 
strong chance that any difference in bird abundance 
might be due to a difference in detectability and not to 
a difference in vegetation type or whatever variable 
 constitutes the comparison of interest.

One potential source of detectability bias that has 
taken center stage in bird survey work is distance from an 

observer because, at some point, detectability must 
decline with increasing distance. Therefore, if the dis-
tance profiles (a plot of the way detectability declines with 
distance) differ among treatment categories, then dif-
ferent numbers of birds will be recorded not because 
abundances differ, but because different effective areas 
are surveyed. Emlen (1971) struggled with this potential 
problem of reporting results derived from the use of 
unlimited- width transects, and he used first principles to 
design a variable- width transect method (the Emlen 
method) to deal with the fact that detectability drops off 
with distance from an observer, and it does so at different 
distances for different species. Emlen proposed an elegant 
solution where one can account for differences in detect-
ability among species (or among land conditions for any 
one species) by creating a histogram of the distances of all 
species- specific bird detections from the transect line. He 
then argued that the inflection point on that detection 
profile (where detectability drops off most rapidly) 
probably represents a reasonable distance within which 
one can safely assume that detectability is near perfect 
and across which there are no net gains or losses in 
numbers of detections due to bird movement before 
detection. That is, the net numbers of additions due to the 
movement of birds toward the observer and bird losses 
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due the movement of birds away from the observer before 
detection are zero at that distance. Beyond that distance, 
losses due to imperfect detection (beyond the baseline 
level of detection) begin to accrue, and one should not 
include those detections in density calculations. Thus, the 
density of each species is calculated separately, using an 
effective area that depends on a species’ detectability. 
This modification of the fixed- width transect was thought 
to solve its most seriously violated assumption (that the 
proportion of actually occurring individuals detected 
within a fixed distance from the observer is the same for 
all species or all conditions for any one species), and it 
caught on like wildfire. One can use the effective area to 
estimate the number of birds per unit area (bird density) 
surrounding an observer. Alternatively, one can simply 
use presence–absence information to generate an index of 
abundance for a particular fixed width (for line transects) 
or fixed radius (for point counts) within which detecta-
bility is assumed to be equal across all categories of com-
parison. In this paper, I refer to these as traditional 
fixed- area approaches that one might use to deal with 
potential distance- based detectability bias.

By the early 1990s, computer power led to the evolution 
of sophisticated modeling approaches to obtain an objective 
estimate of the effective area within which a sample of bird 
detections is obtained from transect or point- count data 
(Buckland et al. 2001, Thomas et al. 2002, 2010, Buckland 
2006). Using a model- based approach, one can now 
automate curve fitting and can (theoretically) control for 
additional covariates (e.g., observer, habitat type, time of 
day, time of season, etc.) that are known to affect detecta-
bility of birds (MacKenzie et al. 2006). For example, given 
adequate sample sizes, it is possible to use multiple covariate 
distance sampling (MCDS) modeling (Thomas et al. 2010) 
to account for the effects of distance covariates. The calcu-
lation of occupancy through the use of program 
PRESENCE (MacKenzie et al. 2006) provides a theoreti-
cally elegant solution because all sources of detectability 
bias at a point can be assessed simultaneously by repeating 
visits to a point and determining just how detectable a 
species is at that point or at a series of points within a 
 particular treatment category. The theoretical underpin-
nings behind these modeling approaches may be elegant 
but, unfortunately, the necessary assumptions associated 
with each are unlikely to be met.

I argue here that the traditional method of using a rea-
sonably limited, fixed- radius survey to generate index values 
(naive occupancy rates) using only those detections that 
occur within an empirically based fixed- radius survey area 
appropriate for one’s target species may still be the best way 
to deal with potential distance- based detectability bias. 
Fixed- radius surveys should not be universally condemned 
and should certainly not be the basis for rejecting a study 
outright, a practice that is now commonplace. In the words 
of Brian McGill (2013), the calculation of detection proba-
bilities has become the sine qua non of publishing in many 
journals. The prospect that journals are censoring sound 
science is bad enough, but even worse is the prospect that 

the modeling requirement is misguided. Requiring everyone 
to adjust their data through the use of models that, although 
elegant, never meet their inherent assumptions is an unde-
sirable development in science. There are two issues that I 
would like to bring into sharp focus in this commentary. 
The first is that modeling approaches designed to deal with 
distance- based detectability problems are fraught with 
insurmountable problems; the second is that distance- based 
detectability bias can probably be controlled satisfactorily 
through the use of fixed- radius surveys when a distance 
cutoff is set by knowledge of where one can assume uni-
formly high bird detectability rates.

ModeLing is unLikeLy to geneRate ReLiabLe  
density oR occupancy estiMates

Numerous practical problems and unmet assumptions 
associated with the model- based methods commonly 
used to address the potential distance- based detectability 
problem should shake one’s trust that those numbers 
 necessarily represent accurate estimates of density or 
accurate estimates of occurrence probabilities. More 
than a decade ago, Hutto and Young (2002) discussed 
why the assumptions associated with modeling distance- 
based detectability are necessarily violated and why they 
preferred to control for that source of potential detecta-
bility bias through the use of data drawn from within a 
fixed and reasonably limited radius (see also Ellingson 
and Lukacs 2003, Hutto and Young 2003). Others (e.g., 
Engeman 2003, Johnson 2008) also concluded that it is 
possible to obtain reliable index values through careful 
research design. Given the current state of affairs, it may 
be time to reiterate the fact that there are insurmountable 
weaknesses associated with model- based approaches and 
that alternative methods to deal with potential detecta-
bility bias probably work quite well.

Seasoned field biologists are intimately familiar with 
what humans can be expected to do reliably in the field, 
and they will be the first to tell you that many of the 
assumptions associated with distance sampling (Thomas 
et al. 2010) are untenable. Unfortunately, the modeling 
approach has prevailed, perhaps because models appear 
to yield definitive results. Consequently, many are quick 
to apply modeling methods blindly rather than making 
an informed choice about whether a distance- controlled 
research design might be a better way to address the 
potential distance bias. Below, I outline the most signi-
ficant assumption violations and significant practical 
problems associated with modeling detectability through 
the use of distance sampling (Thomas et al. 2010) or occu-
pancy modeling (MacKenzie et al. 2006).

assuMption VioLations and pRacticaL pRobLeMs 
 associated with distance saMpLing

Not all objects at a point can be detected with certainty. 
Anyone with field experience knows that, on rare occa-
sions, the assumption of perfect detectability at a survey 
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point is clearly violated; we are sometimes  surprised by 
the presence of birds underfoot or overhead, or by birds 
that flush only after we move upon completion of a count. 
I readily admit, however, that this is a reasonable 
assumption because it is probably extremely rare that 
birders miss nearby birds in most vegetation types.

Birds move frequently. The assumption that birds are 
stationary is always in violation…always. We cannot relax 
this assumption. Birds are alive and they have behavior. 
Some move toward the observer after a count has begun 
but before they are detected (causing overestimates of 
abundance), some move away without being detected 
during a count (causing underestimates). Indeed, most are 
detected at a point that is very different from where they 
were at the beginning of the count. Anyone who believes 
that birds do not move from outside to within detection 
range during a count is mistaken. Birds move both inde-
pendently of, and in direct response to, observers. The very 
common doughnut shape of bird detection rates sur-
rounding a point (e.g., Fig. 2b in Thomas et al. 2010) most 
certainly results from bird movement after arrival of an 
observer but before detection and is a clear violation of the 
assumption that birds do not move away from or toward 
the observer before they are detected.

Measurements are inexact. About 90% of all bird detec-
tions are based on sound alone, and distances to bird 
sounds are notoriously difficult to estimate accurately. 
Despite their widespread use, laser range finders cannot 
fix the problem of not knowing where a bird is located. 
Experienced observers are constantly surprised by the 
magnitude of errors in both distance and direction after a 
bird that was heard suddenly becomes visible. Distances 
can be no more accurately estimated using a fixed- radius 
method, of course, but at least the problem is minimized 
when location errors are restricted to the relatively few 
birds detected near a single fixed- radius distance.

The number of individuals of any one species detected 
from a single point in space is impossible to determine 
precisely. Anyone with field experience knows that birds 
move nearly constantly, and that even experienced 
observers standing at the same point rarely agree on 
numbers of individual birds surrounding the point. For 
this reason alone, one should be very suspicious of density 
calculations based on numbers of individuals detected at 
a point. This is true for both fixed- area and distance sam-
pling approaches; density calculations cannot be trusted 
if it is clear that observers cannot agree on whether mul-
tiple detections result from the same bird flitting from one 
location to another or whether they result from the 
presence of different individual birds. The use of a 5-  to 
10- min survey time window also guarantees an accumu-
lation of birds from outside to within detection range 
during the count, and that can also complicate density 
estimation. Presence–absence data are far more  consistent 
among observers who record detections from the same 
point, and the proportion of points on which a bird species 
is detected is perfectly adequate for addressing most 
 questions that require estimates of  relative abundance.

Sample sizes (numbers of points with detections) for 
most species (especially when one eliminates non- 
independent, repeat visits to points) are ridiculously small, 
and modeled curves are fantasies, at best. If you throw out 
the species for which detections are too few to create a 
reliable detectability profile, the number of species for 
which you can generate a reliable density estimate is tiny 
indeed, very few species generate the 60–80 detections 
required (Buckland et al. 2001) to estimate density 
reliably. Rather than forcing modeled curves through 
sparse datasets, it is probably much safer to use the 
detection profile as a guide for selecting a suitable fixed- 
distance within which detectability can be assumed to be 
uniformly high across all conditions being compared.

A decrease in number of bird detections with increasing 
distance from an observer is often a result of habitat heter-
ogeneity rather than distance per se. As an extreme 
example, consider the nature of data that might be col-
lected along a narrow riparian strip; the more riparian- 
dependent species are never detected beyond 20 m, but one 
would be wrong to conclude from their detectability profile 
that they are not very detectable. Distance sampling will 
generate density estimates that are way too high as a result, 
while relative abundance based on fixed- radius data will 
not be affected because the fixed radius will lie inside that 
apparent decline. Uniform vegetation conditions must lie 
within the range of detectability of a given species for its 
detectability profile to be meaningful, but that is rarely the 
case. Tiny habitat patches (e.g., riparian vegetation or any 
easily recognized heterogeneity in forest cover where 
patches of vegetation exist) will always influence detection 
distances, and detectability profiles for each species will 
always be biased by such habitat heterogeneity.

Curve- fitting is usually conducted using data obtained 
from repeat visits to the same point; in such cases, distance 
estimates are not independent because they are the result 
of recording the same birds in the same locations 
repeatedly. The detection profile of a relatively rare species 
may be less a reflection of how detectable the species is 
than a reflection of where a song post was located relative 
to a point where it was repeatedly detected. This is not a 
fault of modeling per se, but my experience suggests that 
practitioners frequently combine distance estimates from 
repeat visits during analysis, and that is a clear violation 
of the assumption of independence.

For what is supposedly an objective process, program 
DISTANCE requires significant and entirely subjective 
choices when curve fitting, and no two people are likely to 
generate the same density estimate given the same 
data (Welsh et al. 2013). A user is free to choose any combi-
nation of key function (uniform, half- normal, hazard- rate, 
and negative exponential) and series expansion (cosine, 
simple polynomial, and hermite polynomial) elements. 
Thus, even though this step is entirely automated these days, 
it is probably safe to say that most users can neither explain 
nor justify the particular curve- fitting choice they make.

Finally, there is a fundamental problem associated with 
one of the most common uses of adjusted, variable- distance, 
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point- count data: uncovering bird- habitat relationships. 
Because the spatial scale of important habitat heteroge-
neity for most bird species falls well within 100 m from any 
point, birds detected beyond a distance as close as 50 m 
frequently have little relationship with land conditions 
recorded at a survey point (Fig. 1). That means the inclusion 
of more distant detections in habitat or niche modeling will 
tend to obscure rather than expose important habitat asso-
ciations that occur at fine spatial scales. Weighting detec-
tions by distance from the observer does not eliminate this 
problem; it merely lessens the strength of a relationship that 
simply does not exist. If one wants to learn something 
about habitat relationships, there is no substitute for 
recording habitat conditions at or very near a target bird. 
Vegetation conditions recorded at a survey point are 
unused by most of the bird species detected in a 

variable- radius count. Index values emerging from well- 
designed, fixed- radius methods yield results that are almost 
certainly superior to variable- distance methods if one 
wishes to gain insight into bird–habitat relationships.

assuMption VioLations and pRacticaL pRobLeMs 
 associated with occupancy ModeLing

One cannot separate the probability of occupancy 
(availability, Ψ) from the probability of detection 
(detection given availability, P), which has been parame-
terized through repeated sampling in time or space. As 
Amundson et al. (2014) note, if  one cannot distinguish a 
bird’s availability from its perceptibility then one cannot 
know its detectability. Model- based practitioners use 
repeat visits or subsets of a 10- min count as sample 

Fig. 1. Aerial view of the locations of birds detected from a single point in the 2003 Black Mountain fire near Missoula, Montana, 
USA. Circles represent approximate 50 m, 100 m, and 200 m radii surrounding the survey point. Note that the only species using 
severely burned forest conditions immediately surrounding the point (within about 50 m) were Mountain Bluebird (MOBL, Sialia 
currucoides), Chipping Sparrow (CHSP, Spizella passerina), and Dark- eyed Junco (DEJU, Junco hyemalis). The MacGillivray’s 
Warblers (MGWA, Geothlypis tolmiei) were clearly using the riparian draw and had little to do with the open, burned forest conditions 
otherwise. In a similar vein, the Olive- sided Flycatcher (OSFL, Contopus cooperi), Red- tailed Hawk (RTHA, Buteo jamaicensis), 
Orange- crowned Warbler (OCWA, Oreothlypis celata), and Clark’s Nutcracker (CLNU, Nucifraga columbiana) were clearly using 
distant elements of the forest that would not have been included in typical habitat relationships models built from density or 
occupancy models incorporating all bird detections. Other species depicted include American Robin (AMRO, Turdus migratorius), 
Calliope Hummingbird (CAHU, Selasphorus calliope), Dusky Flycatcher (DUFL, Empidonax oberholseri), House Wren (HOWR, 
Troglodytes aedon), Lazuli Bunting (LAZB, Passerina amoena), Northern Flicker (NOFL, Colaptes auratus), Pine Siskin (PISI, 
Spinus pinus), Rock Wren (ROWR, Salpinctes obsoletus) and Western Wood-Pewee (WEWP, Contopus sordidulus).
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periods in an attempt to tease apart two kinds of zeroes: 
one when a bird is present during a survey but is unde-
tected (a false absence) and the other when a resident bird 
is truly absent during a survey. Unfortunately, repeat visits 
to a point do not allow one to distinguish whether a bird 
was present but undetected or whether it was truly absent 
during some of the counts. In addition, by repeating visits 
across an entire season (the most common design in bird 
survey work) one clearly violates the assumption of 
closure to changes in the state of occupancy because not 
all bird species are present throughout the typical sample 
season (Hayes and Monfils 2015). Similarly, time period 
subsets of a single 10- min point count are not even close 
to being independent samples, where the probability of 
detection in one period is independent of the probability 
in another, as required by occupancy modeling.

An unfortunate consequence of occupancy modeling is 
that one must assume that absences during a subset of 
repeat visits or sample time periods result from birds that 
were, at times, present but missed. If the birds were not 
actually present during the count, that useful information 
gets thrown away by adjusting numbers under the 
assumption that they were present but missed. One of the 
most powerful measures of habitat suitability is actually 
reflected well in naïve detectability because it is probably 
safe to assume that a point where a bird is frequently 
detected is a much better place to be than a point where 
a bird is rarely detected. One retains that information 
with naïve occupancy data but throws it away by using 
adjustments that assume the bird was there all the time 
but undetected during some visits.

Occupancy modeling requires repeat visits to points to 
obtain both density and occupancy estimates, and those 
repeat visits are bought at a significant cost in terms of gen-
erality of results because a reallocation of effort could have 
provided two, three, or even five times more independent 
treatment samples. There will always a trade- off between 
breadth and depth in sampling, and there is no correct 
method, so requiring one to sacrifice generality is unwise.

Because occupancy modeling favors shorter count 
durations and requires repeat visits to a point, the rela-
tively recent emergence of this modeling approach to 
account for imperfect detection has also interfered with 
our ability to maintain common standards in field methods 
and with the integrity of long- term monitoring efforts that 
were established decades ago (Matsuoka et al. 2014).

a Fixed- aRea design May be the best way to deaL 
with the potentiaL pRobLeM oF distance- based 

 detectabiLity bias

Nobody has ever argued that distance and numerous 
other factors do not pose potential problems when the 
land conditions or time periods being compared differ in 
bird detectability because of those factors. Nor has anyone 
ever argued that model- based solutions to the detectability 
problem lack a strong theoretical  underpinning and math-
ematical elegance. What a number of us have argued 

elsewhere (Hutto and Young 2002, 2003, Engeman 2003, 
Johnson 2008), and what I am arguing here, is that all of 
this potential bias cannot be eliminated with certainty 
through modeling because too many critical assumptions 
cannot be met and because sample sizes will always prevent 
us from being able to build reliable models for more than 
a handful of species or account for more than a few of the 
most common factors that can affect detectability. 
Modeling distance- based detectability is risky at best; we 
simply cannot model ourselves out of the potential problem 
of distance- based sampling bias.

By restricting data collection to within a reasonably 
limited radius around survey points, a researcher will lose 
some data, but at the same time will also largely eliminate 
the chance of distance- based detectability bias. For 
example, a histogram of the distance- based detectability 
profile for the Black- backed Woodpecker (Picoides 
arcticus) based on 498 detections shows that most birds are 
detected within 200 m and that detections fall off rapidly 
beyond 80–100 m (Fig. 2). By plotting occurrence rate vs. 
fire severity using a fixed radius of between 50 and 100 m 
(between the peak and the inflection point on the detection 
profile), it is quite clear that the species occurs predomi-
nantly in more severely burned forest patches (Fig. 3). Data 
drawn from within a smaller 20 m radius become sparse not 
only because the survey area is very small but because birds 
were present but moved away from the observer before 
detection, so sample size artifacts are likely to have affected 
the resulting distribution pattern. Data drawn from 
an unlimited radius probably also yield a less reliable 
 distribution pattern not only because of differences in 

Fig. 2. Histogram showing numbers of Black- backed 
Woodpecker detections at different distances from the observer. 
Data were drawn from the author’s point- count database. Any 
fixed radius inside the inflection point of about 100 m and 
beyond 40 m ought to provide a reasonable presence–absence 
index of bird abundance.
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Fig. 3. The proportion of Black- backed Woodpeckers detected on different fixed- radius counts in each of several categories of 
fire severity, as measured by percentage of tree mortality within the count area surrounding the survey point. Note that the 
distribution pattern is very consistent using data from between 50 and 100 m, and that the pattern is nearly identical to that obtained 
by estimating density using program DISTANCE (using a half- normal/cosine model, 50- m data bins, and truncating the largest 2% 
of the distance values). The unlimited- radius data and 20- m- radius data probably suffer from errors in categorization and sample 
size bias, respectively.
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detectability among severity categories but, more impor-
tantly, because of the inappropriate assignment of birds to 
severity categories (more distant birds frequently occur in 
environmental conditions that differ from the condition at 
or near the survey point). Given an appropriate 50–100 m 
fixed radius, the overall pattern is clearly no different from 
the pattern obtained by calculating density through the use 
of program DISTANCE (Fig. 3). Playback experiments 
provide additional evidence that one can adequately 
control for distance- based detectability bias by restricting 
data to those collected within a limited radius surrounding 
survey points. Playbacks draw nearby birds into view and 
most certainly increase detectability to near perfect levels. 
Results from playbacks conducted at more than 3,000 
points positioned in forest patches that burned at four dif-
ferent severities confirm that the pattern of occurrence in 
more severely burned forest patches is a result of birds 
being more abundant, not simply more detectable, within a 
limited area around survey points (Hutto 2008). Others 
have also reported greater occurrence rates in more severely 
burned forest patches (e.g., Koivula and Schmiegelow 
2007, Russell et al. 2007, Dudley et al. 2012). Thus, naïve 
occupancy within a fixed radius appears adequate to under-
stand patterns of habitat use by the woodpecker.

To this day, there is no evidence that people who design 
their studies to simultaneously minimize many potential 
sources of bias and then work with data collected from 
within a reasonably limited radius have ever been deceived 
or misled by their results. That would, of course, include 
virtually all biologists who have helped us understand 
nature before model- based approaches to control for 
detectability bias were available. There have been studies 
comparing results derived from fixed- radius and distance- 
sampling methods (e.g., Norvell et al. 2003), but one cannot 
draw conclusions about the efficacy of one method by using 
results from the other as the basis of truth. Even doing so, 
results from the two methods were strikingly similar when 
the fixed radius (50 m) was beyond the distance of maximum 
detectability but still within the distance where detectability 
begins to drop precipitously. Note that 25 m lies inside the 
detectability profile peak (see Fig. 2 in Norvell et al. 2003), 
so a 25 m radius failed to produce results that were in 
agreement with those derived from use of the more appro-
priate 50 m or 100 m fixed radii or from distance sampling 
methods (see Fig. 4 in Norvell et al. 2003).

The only way one can judge the accuracy of results 
derived from indices of abundance and modeled densities 
(or occupancy rates) is to calculate bird density from the 
precise mapping of territories of marked birds and use that 
as a basis of comparison. That kind of comparison has 
been conducted only rarely, however, because the logistics 
needed to generate an accurate map (while not interfering 
with point- count results derived from the same area) are 
daunting. Published results using this approach (e.g., Gill 
1980, Greene and Pryde 2012, Newell et al. 2013) show 
inconsistent results, which is not surprising given nearly 
infinite variation in the way each method is implemented. 
Nonetheless, there is most often general agreement in bird 

occurrence patterns derived from territory mapping, 
appropriately selected fixed radius, and distance sampling 
methods. Perhaps we have become obsessed with trying to 
fix a detectability problem that is adequately handled 
through traditional research design methods. Indeed, even 
though one’s analytical method is likely to affect conclu-
sions requiring estimates of density or actual population 
size, the choice of method is unlikely to affect results 
involving comparisons of relative abundances among hab-
itats or treatment categories (Reidy et al. 2011), which con-
stitute the vast majority of bird survey needs.

concLusion

The most commonly employed methods of controlling 
for distance- based detectability bias while modeling bird 
density (number per unit area) or occupancy (the pro-
portion of sites occupied during counts) are not without 
problems. Specifically, assumptions that accompany the 
derivation of most distance- based density estimates are so 
clearly violated that one must question the accuracy of 
such estimates. The naïve probability of bird occurrence 
derived from carefully designed data collection scheme 
and from a carefully chosen fixed radius probably consti-
tutes a satisfactory index to bird abundance and should be 
recognized as a suitable solution to the potential problem 
of distance- based detectability bias. Consider the Black- 
backed Woodpecker again. The probability of detecting 
this species within a limited radius surrounding survey 
points is some 20 times greater in burned forests than in 
any other major vegetation type or condition in the 
Northern Rockies (Hutto 2008). The naïve probabilities 
drawn from a limited and fixed area probably reflect rel-
ative abundances quite well and are unlikely to have 
created a misleading distribution pattern. It is far more 
likely that this statistically significant pattern reflects 
something biologically real. Whether the actual difference 
in abundance is a twentieth or a thirtieth or a tenth matters 
little: the difference is greater than that expected due to 
chance and is a difference that is in no way a product of 
some kind of detectability bias. Given a research design 
that includes use of limited distances, observer training, 
rotation of observers among sites, use of restricted times of 
day, restricted weather conditions, restricted times of 
season, etc., it would be foolish to think that the overall 
pattern is the result of observers having missed birds where 
fewer were detected. A little logic is all one needs to know 
that if one controls for known sources of detectability bias 
through reasonable design adjustments and restricts 
analyses to the data collected within a limited distance, the 
naïve probability of detection almost certainly reflects 
 relative abundance. This woodpecker example and addi-
tional examples presented in other published studies (e.g., 
Reidy et al. 2011, Newell et al. 2013) suggest as much.

Modeling to account for a small subset of factors known 
to affect detectability does not necessarily eliminate the 
potential detectability problem nor does it stand as the only, 
or necessarily the best, way to deal with the potential 
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problem. The most important thing a researcher can do is 
use some common sense up front when designing a bird 
survey so that he or she is unlikely to be fooled by those 
potential problems. As Engeman (2003) emphasized a 
decade ago, after- the- fact modeling solutions will never be 
as strong as solutions based on before- the- fact research 
design. At some point, biological intuition gained through 
extensive field experience has to maintain a strong voice in 
ecology because such experience is much more likely to 
serve as a valuable check on results than is experience with 
model building alone. Indeed, only solid field experience can 
lead one to appreciate just how badly violated most of these 
modeling assumptions are and just how careful we have to 
be when interpreting results from these modeling efforts.

Reviewers and editors should not be so quick to condemn 
the use of fixed- radius count data; well- designed studies 
yield reliable indices that can be used to expose patterns of 
bird occurrence, population trends, and bird–habitat rela-
tionships. It is possible that we are using model- based 
approaches to cure a detectability bias disease that, in the 
words of Johnson (2008), “…may be little or no better than 
the original ailment.” What editors should be insisting on 
is the production of tables that include what observers 
measure reliably in the field (e.g., naïve occupancy or the 
proportion of points on which a species was detected within 
a meaningful fixed radius) and not just modeled density 
estimates and model parameters emerging from a process 
fraught with assumption violations. Common sense and 
biological insight really ought to prevail over what has 
become a frighteningly blind application of model- based 
solutions to the potential detectability problem.

acknowLedgMents

I would like to thank Aaron Flesch, Doug Johnson, John 
Marzluff, Phil Stouffer, Scott Sillett, and an anonymous 
 reviewer for encouragement and helpful suggestions.

LiteRatuRe cited

Amundson, C. L., J. A. Royle, and C. M. Handel. 2014. A hier-
archical model combining distance sampling and time 
 removal to estimate detection probability during avian point 
counts. Auk 131:476–494.

Buckland, S. T. 2006. Point- transect surveys for songbirds: 
 robust methodologies. Auk 123:345–357.

Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. Laake, 
D. L. Borchers, and L. Thomas. 2001. Introduction to dis-
tance sampling: estimating abundance of animal populations. 
Oxford University Press, New York, New York, USA.

Dudley, J. G., V. A. Saab, and J. P. Hollenbeck. 2012. Foraging- 
habitat selection of Black- backed Woodpeckers in forest 
burns of southwestern Idaho. Condor 114:348–357.

Ellingson, A. R., and P. M. Lukacs. 2003. Improving methods 
for regional landbird monitoring: a reply to Hutto and 
Young. Wildlife Society Bulletin 31:896–902.

Emlen, J. T. 1971. Population densities of birds derived from 
transect counts. Auk 88:332–342.

Engeman, R. M. 2003. More on the need to get the basics right: 
population indices. Wildlife Society Bulletin 31:286–287.

Gill, B. J. 1980. Abundance, feeding, and morphology of passer-
ine birds at Kowhai Bush, Kaikoura, New Zealand. New 
Zealand Journal of Zoology 7:235–246.

Greene, T. C., and M. A. Pryde. 2012. Three population estima-
tion methods compared for a known South Island robin pop-
ulation in Fiordland, New Zealand. New Zealand Journal of 
Ecology 36:340–352.

Hayes, D. B., and M. J. Monfils. 2015. Occupancy modeling of 
bird point counts: implications of mobile animals. Journal of 
Wildlife Management 79:1361–1368.

Hutto, R. L. 2008. The ecological importance of severe wild-
fires: some like it hot. Ecological Applications 18:1827–1834.

Hutto, R. L., and J. S. Young. 2002. Regional landbird moni-
toring: perspectives from the northern Rocky Mountains. 
Wildlife Society Bulletin 30:738–750.

Hutto, R. L., and J. S. Young. 2003. On the design of monitor-
ing programs and the use of population indices: a reply to 
Ellingson and Lukacs. Wildlife Society Bulletin 31:903–910.

Johnson, D. H. 2008. In defense of indices: the case of bird sur-
veys. Journal of Wildlife Management 72:857–868.

Koivula, M. J., and F. K. A. Schmiegelow. 2007. Boreal wood-
pecker assemblages in recently burned forested landscapes in 
Alberta, Canada: effects of post- fire harvesting and burn 
 severity. Forest Ecology and Management 242:606–618.

MacKenzie, D. I., J. D. Nichols, J. A. Royle, K. H. Pollock, 
L. L. Bailey, and J. E. Hines. 2006. Occupancy estimation and 
modeling: inferring patterns and dynamics of species occur-
rence. Elsevier, Burlington, Massachusetts, USA.

Matsuoka, S. M., C. L. Mahon, C. M. Handel, P. Sólymos, 
E. M. Bayne, P. C. Fontaine, and C. J. Ralph. 2014. Reviving 
common standards in point- count surveys for broad infer-
ence across studies. Condor 116:599–608.

McGill, B. 2013. Is using detection probabilities a case of statistical 
machismo? http://dynamicecology.wordpress.com/2013/01/11/
is-using-detection-probabilities-a-case-of-statistical-machismo/.

Newell, F. L., et al. 2013. Comparison of point counts and terri-
tory mapping for detecting effects of forest management on 
songbirds. Journal of Field Ornithology 84:270–286.

Norvell, R. E., F. P. Howe, and J. R. Parrish. 2003. A seven- 
year comparison of relative- abundance and distance- 
sampling methods. Auk 120:1013–1028.

Ralph, C. J., and J. M. Scott. 1981. Estimating numbers of ter-
restrial birds. Allen Press, Lawrence, Kansas, USA.

Reidy, J. L., F. R. Thompson, and J. W. Bailey. 2011. Comparison 
of methods for estimating density of forest songbirds from 
point counts. Journal of Wildlife Management 75:558–568.

Russell, R. E., V. A. Saab, and J. G. Dudley. 2007. Habitat- 
suitability models for cavity- nesting birds in a postfire land-
scape. Journal of Wildlife Management 71:2600–2611.

Thomas, L., S. T. Buckland, K. P. Burnham, D. R. Anderson, 
J. L. Laake, D. L. Borchers, and S. Strindberg. 2002. Distance 
sampling. Pages 544–552 in A. H. El-Shaarawi, and W. W. 
Piegorsch, editors. Encyclopedia of environmetrics. John 
Wiley and Sons, Chichester, UK.

Thomas, L., S. T. Buckland, E. A. Rexstad, J. L. Laake, 
S. Strindberg, S. L. Hedley, J. R. B. Bishop, T. A. Marques, 
and K. P. Burnham. 2010. Distance software: design and anal-
ysis of distance sampling surveys for estimating  population 
size. Journal of Applied Ecology 47:5–14.

Welsh, A. H., D. B. Lindenmayer, and C. F. Donnelly. 2013. 
Fitting and interpreting occupancy models. PLoS One 8:e5201.

data aVaiLabiLity

Data associated with this paper have been deposited in Dryad: http://dx.doi.org/10.5061/dryad.46tp6


