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Abstract

Yersinia pestis, the bacterial agent of plague, is enzootic in many parts of the world within

wild rodent populations and is transmitted by different flea vectors. The ecology of plague is

complex, with rodent hosts exhibiting varying susceptibilities to overt disease and their fleas

exhibiting varying levels of vector competence. A long-standing question in plague ecology

concerns the conditions that lead to occasional epizootics among susceptible rodents.

Many factors are involved, but a major one is the transmission efficiency of the flea vector.

In this study, using Oropsylla montana (a ground squirrel flea that is a major plague vector in

the western United States), we comparatively quantified the efficiency of the two basic

modes of flea-borne transmission. Transmission efficiency by the early-phase mechanism

was strongly affected by the host blood source. Subsequent biofilm-dependent transmission

by blocked fleas was less influenced by host blood and was more efficient. Mathematical

modeling predicted that early-phase transmission could drive an epizootic only among

highly susceptible rodents with certain blood characteristics, but that transmission by

blocked O. montana could do so in more resistant hosts irrespective of their blood character-

istics. The models further suggested that for most wild rodents, exposure to sublethal doses

of Y. pestis transmitted during the early phase may restrain rapid epizootic spread by

increasing the number of immune, resistant individuals in the population.

Author summary

The ecology of bubonic plague is complex but depends largely on flea-borne transmission.

Certain susceptible rodents experience periodic epizootics that can decimate local popula-

tions, but the conditions that lead to these episodes are not fully understood. Fleas can

transmit Yersinia pestis, the bacterial agent of plague, during two different phases: an early

phase within the first few days after their infectious blood meal and again sometime later
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after the development of a Y. pestis biofilm in the flea foregut. The relative contribution of

these two transmission modes to plague ecology has not been systematically examined.

Our results indicate that in most ecological contexts early-phase transmission is too ineffi-

cient to drive an epizootic, but instead acts to reduce the number of susceptible individu-

als in a population, thereby favoring a more stable enzootic state.

Introduction

Plague is a vector-borne zoonotic disease that primarily afflicts rodents, notably members of

the Muridae (rats, mice, gerbils) and Sciuridae (squirrels, marmots, prairie dogs), and persists

in extensive natural foci throughout the world. Yersinia pestis, the plague bacillus, circulates

within these host populations via rodent-flea-rodent transmission cycles that involve several

flea vector species. Plague exhibits an enigmatic pattern in which dramatic epizootics in highly

susceptible rodent populations periodically flare up from the normal relatively quiescent enzo-

otic background state of a plague focus or from reintroduction of Y. pestis into a population.

The ecological factors and biological mechanisms that initiate and drive these periodic epizo-

otics versus those that tend toward enzootic maintenance have been subjects of long-standing

interest [1–5]. Metapopulation structure, fluctuations in population densities of rodents and

fleas, and the immune status and degree of susceptibility to overt disease within and among

reservoir host species have been theorized to be important [1, 6–12].

One crucial component of plague cycle dynamics is the transmission rate from infected to

uninfected hosts. Although it can sometimes be transmitted by direct contact, ingestion, or

aerosol, Y. pestis has evolutionarily adapted to the flea-borne transmission route on which it

now depends. Fleas can transmit Y. pestis in three stages following an infectious blood meal.

Transmission can occur the very next time they feed during the first week after infection, a

phenomenon referred to as early-phase transmission. The second and third stages of transmis-

sion are effectuated after Y. pestis forms a bacterial biofilm in the proventriculus, a valve

between the esophagus and midgut. As the biofilm grows it gradually restricts the passage of

blood through the proventriculus and impedes valvular function. In this partially blocked

state, fleas are able to ingest some blood but because the proventricular valve is unable to close

completely, blood contaminated with bacteria from the flea digestive tract can backflow into

the bite site [13, 14]. Eventually, in the final stage, the biofilm can fill the entire proventriculus

and completely block the flow of incoming blood into the midgut. When such completely

blocked fleas attempt to feed, blood flowing into the esophagus is stopped in front of the

blocked proventriculus, the esophagus initially expands, and then the blood, mixed with some

of the bacteria washed from the proventricular biofilm, is recoiled back into the bite site [14,

15]. Early-phase transmission was historically referred to as mass transmission, because it is

rarely observed unless groups of 5 to 10 or more infected fleas feed simultaneously on a naïve

animal. Although long assumed to be a form of mechanical transmission, early-phase trans-

mission also appears to occur via regurgitation of bacteria from a heavily infected proventricu-

lus even though it does not depend on formation of a mature biofilm [14, 16–18]. Thus,

bacterial obstruction of the lumen of the proventricular valve and its normal function, to a

greater or lesser extent, is the underlying mechanism common to all three modes of transmis-

sion [14].

The several rodent flea species implicated in plague transmission cycles vary in their vector

efficiency [19]. However, the relative efficiency of the different phases of transmission by indi-

vidual fleas has not been empirically evaluated in a systematic way. Early-phase transmission
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and transmission by blocked fleas have been studied in separate experiments and comparisons

made between them, but significant differences in experimental design among the studies make

the conclusions problematic. Different infectious doses and blood meal sources, both of which

greatly affect flea infection and transmission outcomes, have been employed. Transmission by

partially blocked fleas has for the most part been neglected; often the blockage rate has been

used as the surrogate indicator for transmission beyond the early phase. Mathematical modeling

based on parameterization of these available data has supported a role for early-phase transmis-

sion in driving epizootics in some ecological contexts [20, 21]. However, there is a recognized

need to reexamine the relative vector competency of different flea species and efficiencies of the

different transmission modes using newer standardized, more exacting methods [22].

In this study, we examined transmission of Y. pestis by the North American ground squirrel

flea, Oropsylla montana. Several aspects of transmission dynamics were recorded during a

one-month period following a single infectious mouse or rat blood meal, including infection

and mortality rates and the incidence of proventricular blockage. The number of Y. pestis
transmitted by individual fleas during the early phase (2 to 4 days after infection) and after the

development of partial or complete blockage was also determined. The data were used to

parameterize a simple deterministic susceptible-exposed-infected-recovered (SEIR) model of

plague transmission dynamics that we developed. Simulations using the model provided an

assessment of the relative contributions of early-phase transmission and biofilm-dependent

transmission to disease incidence ensuing from a single cohort of fleas that feed on a highly

bacteremic host. The influence of infectious blood source (mouse vs. rat) on plague transmis-

sion dynamics was also evaluated.

Results

Quantitative evaluation of flea infection and transmission parameters

Cohorts of O. montana fleas were infected by feeding on highly bacteremic mouse or rat blood

(containing 5 to 8 x 108 Y. pestis/ml) and thus began with a 100% infection rate at an average

of 3 to 6 x 104 Y. pestis per flea on day 0. Fleas were maintained at 21˚C and provided twice-

weekly mouse or rat sterile blood meals for 4 weeks and monitored for mortality, infection,

and proventricular blockage status (Fig 1). Host blood source had a large effect on infection

rate. Consistent with a previous study [23], over half of the fleas infected using mouse blood

had completely cleared the infection by day 3. In contrast, around 90% of fleas infected using

rat blood remained infected (Fig 1A). The bacterial load of the chronically infected fleas was

similar, however (Fig 1B). In correlation with their higher infection rate, a higher percentage

Fig 1. Infection and blockage rates of O. montana fleas during a four-week period following a blood meal

containing 5 to 8 x 108 Y. pestis/ml in mouse blood (blue symbols) or rat blood (red symbols). (A) The percentage

of fleas still infected and (B) the bacterial load per infected flea at different times after infection. (C) The percentage of

fleas that developed partial or complete proventricular blockage during the four-week period. The mean and range of

three independent experiments using mouse blood and two experiments using rat blood (Table 1) are indicated.

https://doi.org/10.1371/journal.ppat.1010996.g001
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of fleas infected using rat blood developed proventricular blockage during the experiments

than fleas infected using mouse blood (21% and 11%, respectively; Table 1, Fig 1C). Fleas that

appeared to be partially or even completely blocked were seen as early as 2 to 3 days after infec-

tion, although the highest incidence occurred between 1 and 3 weeks after infection (Fig 2).

Table 1. Values for flea infection and transmission factors determined in this study.

mouse blood rat blood

Fleas cleared of infection by:

day 3 59% (55–65%) 8% (0–15%)

day 7 57% (40–70%) 8% (5–10%)

day 28 65% (55–75%) 15% (5–25%)

Fleas partially blocked (%) 15% (10–21%) 24% (16–32%)

Days to develop partial blockage 8 (2–30) 12 (3–27)

Life span of partially blocked fleas (days) a 7 (1–18) 8 (1–20)

Fleas blocked (%) 11% (5–16%) 21% (17–25%)

Days to develop blockage 11 (6–22) 15 (3–35)

Life span of blocked fleas (days)a 5 (1–11) 4 (1–8)

Mortality of unblocked fleas (28 days P.I.) 17% (12–21%) 35% (28–39%)

Transmission efficiencyb of:

Early-phase fleas (day 2–4) 3% (1/38) 10% (4/42)

Partially blocked fleas 11% (2/18) 10% (5/48)

Blocked fleas 50% (20/40) 67% (46/69)

Median no. CFU transmittedc by:

Early-phase fleas (day 2–4) 1 17

Partially blocked fleas 1,090 417

Blocked fleas 230 63

The average and range of the results from three independent experiments with O. montana
fleas infected and maintained using mouse blood (n = 177, 209, 283; 669 fleas total) and two experiments using rat

blood (n = 247, 192; 439 fleas total) are shown. Of these, 80–100 were used solely for flea infection rate and bacterial

load determinations in each experiment (n = 20 fleas for each of the timepoints); the other 429 (mouse blood

experiments) and 279 fleas (rat blood experiments) were used to monitor blockage, mortality, and transmission. The

early-phase transmission efficiency (rat blood) was based on two separate experiments (n = 60 and 72 fleas; 132 total)

with fleas infected with the Y. pestis ΔhmsH mutant.
a Days from diagnosis of partial or complete blockage to death
b The number of positive transmission events divided by the total number of bites by individual fleas in each category
cValues for positive transmission events only

https://doi.org/10.1371/journal.ppat.1010996.t001

Fig 2. Temporal distribution of the occurrence of partial and complete blockage in O. montana fleas following a

single infectious blood meal containing 5 to 8 x 108 Y. pestis/ml in mouse or rat blood. The cumulative numbers

from the three experiments using mouse blood (A) and two experiments using rat blood (B) are shown; see Table 1 for

details.

https://doi.org/10.1371/journal.ppat.1010996.g002
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Transmission efficiency of fleas during the early phase (2 to 4 days after the infectious

blood meal) and of partially and completely blocked fleas was determined by allowing individ-

ual fleas to feed on a small reservoir of sterile mouse or rat blood for 1 h, and then recovering

and plating the blood for CFU (colony-forming unit) count. Fleas were examined for evidence

of feeding and for proventricular blockage status immediately after the 1 h access period. The

rodent source of the infectious blood meal had a large effect on early-phase transmission effi-

ciency. Only 1 of 38 fleas (3%) infected using mouse blood transmitted during their first blood

meal 2 to 4 days later, and only 1 CFU was recovered from the blood that this flea fed upon

(Fig 3). In contrast, 8 of 33 (24%) of fleas infected using rat blood transmitted 3 to 2,000 CFU

during early-phase transmission trials. Notably, however, 5 of these 8 fleas were observed to be

completely blocked and 2 appeared to be partially blocked after this initial post-infection feed-

ing on day 3 or 4. For this reason, we repeated early-phase transmission trials with fleas

infected with a Y. pestis hms mutant strain, which is unable to block fleas but is fully transmis-

sible in the early phase [17, 24]. To clearly distinguish the two transmission modes, we concen-

trated on results with this hms mutant [4 of 42 fleas (10%) transmitted 3 to 72 CFU (median 17

CFU); Fig 3] to estimate the early-phase transmission efficiency.

Our estimate of early-phase transmission efficiency for fleas infected using rat blood was in

line with those reported previously for O. montana infected similarly that were used to chal-

lenge mice [17, 20, 25–27]. However, our estimate for fleas infected using mouse blood (3%)

Fig 3. The number of Y. pestis CFU transmitted by individual O. montana fleas 2 to 4 days after infection (early-

phase) and after the development of partial or complete proventricular blockage. Cumulative results from three

experiments using mouse blood (blue symbols), two experiments using rat blood (red symbols), and two experiments

using rat blood and the Y. pestis ΔhmsH mutant strain (open circles) are shown (see Table 1 for details); bars indicate

the median number of Y. pestis transmitted per individual flea bite. The transmission probability (number of positive

transmissions divided by the total number of trials) is indicated. All early-phase fleas were confirmed to have been

infected when they fed for the transmission test. For both the partially blocked and blocked groups, differences in

transmission probability and the number of CFU transmitted by fleas infected using mouse blood or rat blood were

not statistically significant.

https://doi.org/10.1371/journal.ppat.1010996.g003
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was much lower than we found with the mouse challenge model (18%; [27]). This may in part

be due to a lower sensitivity of the in vitro transmission model. The number of CFUs transmit-

ted in the early phase by fleas infected using mouse blood was clearly very low, but some trans-

missions of one or a few bacteria may have been missed because the efficiency of plating and

recovering very low CFU numbers from a blood reservoir is likely not 100%. For the early-

phase probability of transmission parameters (pep) described below, therefore, we chose to use

the higher estimates reported for the mouse challenge model (18% and 14% for O. montana
infected using mouse or rat blood, respectively) [27]. These parameter values were used in con-

junction with our empirical data on the number of wild-type and hms mutant Y. pestis trans-

mitted by individual early-phase fleas infected using mouse or rat blood, respectively (Fig 3).

Transmission by partially blocked fleas was also rather inefficient–only about 10% of feed-

ing events resulted in transmission, regardless of the infectious blood source (Fig 3).

Completely blocked fleas had the highest transmission efficiency, and it was similar for fleas

infected using mouse or rat blood (50% and 67%, respectively; p = 0.1). Transmission tests

were repeated periodically for blocked fleas as long as they remained alive, and several of these

fleas transmitted on more than one day (Fig 4). In one case, a single blocked flea transmitted

four different times over a period of 12 days.

Another aspect of transmission efficiency is the number of bacteria transmitted per bite,

which we were able to assess on an individual flea basis. The number of Y. pestis transmitted

by blocked fleas can be highly variable [28, 29]. Our results confirm that, with a range from 1

Fig 4. (A) Frequency distribution histogram of the numbers of Y. pestis CFU transmitted by individual O. montana fleas during the

early phase (EPT) and by partially blocked (PB) and completely blocked (B) fleas. (B) Temporal distribution pattern of the number of

CFU transmitted by individual partially blocked (PB) and completely blocked (B) fleas (positive transmission events only). Lines

connecting data points indicate transmissions by the same flea on successive days. Cumulative results from three experiments using

mouse blood (blue symbols) and two experiments using rat blood (red symbols) are shown; see Table 1 for details.

https://doi.org/10.1371/journal.ppat.1010996.g004
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to>10,000 CFU transmitted by individual fleas, and also indicate that the number of Y. pestis
transmitted by early-phase and partially blocked fleas can vary widely (Figs 3 and 4) An excep-

tion may be early-phase transmission by fleas infected using mouse blood, which was of such

low efficiency that only small numbers are likely to be transmitted (Fig 3). A summary of the

results of the flea infection and transmission experiments is given in Table 1.

Model simulations of flea-borne transmission dynamics

We developed a deterministic SEIR model to compare the relative contribution of three trans-

mission stages on plague dynamics in the context of two host blood sources that are known to

influence infection of fleas and early-phase transmission [16, 30]. Conceptual design of the

model is illustrated in Fig 5. Our experimental results summarized above were used to estimate

the parameter values of the flea vector submodel (Table 2). Parameter values for the rodent

host submodel (Table 3) are from published sources. We examined different model structures

based on fleas infected using bacteremic mouse or rat blood, host susceptibility to fatal plague

[lethal dose (LD100) of 1, 10, or 100 Y. pestis CFUs], and transmission mode (early-phase trans-

mission or biofilm-dependent transmission by blocked or partially blocked fleas). The starting

condition was 9 susceptible hosts, 1 infected (highly bacteremic) host, and 50 uninfected fleas;

model outputs were recorded over a simulated 100-day period (S1 Fig). Fig 6A shows the pre-

dicted mortality for the various scenarios. With all transmission modes operative, plague epi-

zootics (arbitrarily defined as� 50% cumulative mortality during the 100-day simulation)

ensued in the most susceptible host population, but at the second tier of susceptibility

(LD = 10 CFU) the output was host-blood dependent. Fleas infected using rat blood were pre-

dicted to cause an epizootic, but fleas infected using mouse blood were not. In the more resis-

tant population (lethal dose of 100 CFU), enzootic scenarios (<50% mortality) ensued with

both sets of fleas. Most of the mortality was attributable to transmission by blocked fleas–when

early-phase transmission parameters were set to zero, mortality was equivalent or even slightly

Fig 5. Flow chart of the flea vector-rodent host model. The three transmission-competent stages of flea infection are

highlighted, and the different possible outcomes following transmission to the rodent host are indicated. See text and

Tables 2 and 3 for details. tx = tep, tpb, or tb.; px = pep, ppb, or pb.

https://doi.org/10.1371/journal.ppat.1010996.g005
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Table 2. Summary of parameter values, flea vector sub-model.

Parameter Definition Calculation Value Ref.

Mouse blood Rat

blood

b Daily biting rate (uninfected, early-phase, and partially blocked fleas) 1
avg: interval ðdaysÞ

between feeds

0.4 0.4 This study

bb Daily biting rate (blocked flea) 1
avg: interval ðdaysÞ between

feeding attempts ðB fleasÞ

> 1 > 1 This study, [15, 28]

α Proportion of fleas infected from host with high bacteremia no: fleas infected ðd0Þ

no: f leas that fed on

bacteremic blood

1.0 1.0 This study

λA Rate of developing partial blockage ð% PB fleasÞ�100

ðavg: time to PBÞ� 3d
0.035 0.04 This study

λB Rate of infection clearance ð% fleas cleared by 3dÞ�100

3d
0.20 0.02 This study

λC Rate fleas leave infectious population after early phase ð% f leas still infected after 3d

but never PB=BÞ�100
ðavg: time to PBÞ� 3d

0.07 0.06 This study

τ Rate of developing complete blockage 1

avg: days from PB to B 0.39 0.48 This study

μf Uninfected flea mortality rate 1

avg: life span of fleas ðdaysÞ 0.02 0.02 [31]

μpb Mortality rate of partially blocked fleas 1

avg: TTD after becoming PB 0.14 0.13 This study

μb Mortality rate of blocked fleas 1

avg: TTD after becoming B 0.20 0.26 This study

pep Probability of early-phase transmission no: transmission events
no: pos: feeding attempts

ðd 2� 4Þ

0.18

(0.86)

0.14

(0.78)

This study, [27]

ppb Probability of transmission (partially blocked fleas) no: transmission events
no: pos: feeding attempts

ðby PB fleasÞ

0.11 0.10 This study

pb Probability of transmission (blocked fleas) no: transmission events
no: pos: feeding attempts

ðby B fleasÞ

0.5

(0.75)

0.67

(0.89)

This study

tep Proportion of early-phase transmission events� LD of rodent no: events in which

CFUs transmitted � LD
total transmission events

ðearly phaseÞ

1.0 (1.0) a 1.0 (1.0) a This study

0 (0)b 0.5 (1.0)b

0 (0)c 0 (0)c

tpb Proportion of transmission events by partially blocked fleas� LD of rodent no: events in which

CFUs transmitted � LD
total transmission events

ðby PB fleasÞ

1.0 a 1.0a This study

0.5b 1.0b

0.0c 1.0c

tb Proportion of transmission events by blocked fleas� LD of rodent no: events in which

CFUs transmitted � LD
total transmission events

ðby B fleasÞ

1.0 (1.0) a 1.0a This study

0.8 (0.96)b 0.8 (0.96)b

0.65 (0.88)c 0.41 (.65)c

B, blocked; PB, partially blocked; TTD; time to death.

Values in parentheses adjusted to account for cumulative transmission by simultaneous flea bites as described in Methods section.
a, b, c = Values for LD (lethal dose100) = 1, 10, or 100 Y. pestis CFU

https://doi.org/10.1371/journal.ppat.1010996.t002

Table 3. Summary of parameter values, rodent host sub-model.

Parameter Definition Calculation Value� Ref.

γ Recovery rate after infectious transmission 1

avg: time to recovery ð14 dÞ 0.07 [32]

σ Rate of developing terminal bacteremia after infectious transmission 1

avg: time to terminal bacteremia ð4 dÞ 0.25 [33–38]

μR Mortality rate of uninfected rodents and those with latent or resolved infections 1

avg: life span of rodent 0.002 [39]

ε Mortality rate of rodents with septicemic plague 1
avg: life span of rodent

with terminal bacteremia ð2 dÞ

0.50 [28, 33]

Parameter values are based on data from mouse and rat models of acute plague

https://doi.org/10.1371/journal.ppat.1010996.t003
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higher than when both transmission modes were operative. Conversely, when blockage-

dependent transmission was removed, predicted mortality was 2.7- to 3.6-fold lower in all

cases. The strong influence of the infectious blood source on early-phase transmission (Fig 3)

was reflected in the model output (Figs 6A and S1). Early-phase-dependent mortality effected

by fleas infected using mouse blood was 36% in the highly susceptible host population (LD = 1

CFU) but nil in the other two populations–the only fatality was the single infected host used to

initiate the model simulations. In contrast, early-phase transmission generated higher mortal-

ity (93% and 24%) in the two susceptible populations in the rat blood context, although it was

still negligible in the more resistant population (LD = 100 CFU).

Recent studies of early-phase transmission efficiency have used a model in which groups of

~10 fleas infected using highly bacteremic rat blood fed simultaneously on highly susceptible

laboratory mice (LD50 <10 CFU) [20, 40, 41]. To explicitly examine this scenario, we adjusted

our early-phase transmission parameters, which are based on an individual flea bite, to reflect

the cumulative probability of 10 simultaneous flea bites transmitting a lethal dose. In addition,

since a blocked flea makes repeated feeding attempts, we likewise adjusted the blocked flea

transmission parameters to reflect the cumulative probability of transmitting a lethal dose in

two consecutive feeding attempts. The adjusted parameters are listed in Table 2. In this sce-

nario, early-phase transmission by fleas infected using mouse blood was sufficient to produce

an epizootic only in the most susceptible host population, and in populations with the first two

levels of susceptibility by fleas infected using rat blood (Figs 6B and S2). High mortality ensued

Fig 6. Model predictions of the incidence of infected-dead (% mortality) and infected-recovered (% recovered)

hosts in populations with different levels of susceptibility [lethal dose (LD) of 1, 10, or 100 Y. pestis CFU]. Separate

outcomes produced by fleas infected using mouse blood or rat blood in which both early-phase transmission and

biofilm-dependent transmission by partially and completely blocked fleas are operative (All Tx); or in which only

early-phase transmission (EPT only) or only biofilm-dependent transmission (B/PB only) are operative are indicated.

All simulations were initiated with 9 susceptible hosts, 1 infected (highly bacteremic) host, and 50 uninfected fleas,

monitored over a 100-day period. The results from two versions of the model using (A) unmodified parameters and

(B) modified parameters for probability of transmission (p) and probability of transmission at or above a lethal dose (t)
that account for cumulative transmission by simultaneous flea bites (S1 and S2 Figs). See text for details.

https://doi.org/10.1371/journal.ppat.1010996.g006
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in the more resistant host population only when transmission by blocked and partially blocked

fleas was included in the model. Notably, with both modes of transmission active, mortality in

this more resistant population was less than half that (27%) of the mortality predicted when

blockage-dependent-transmission operated alone (early-phase transmission parameters set to

zero; 66% mortality). Correspondingly, infected but recovered hosts were greater in this popu-

lation when both modes of transmission were operative than when early-phase transmission

was eliminated (59% and 25% recovery rate, respectively; Figs 6 and S2).

Estimation of flea densities required for enzootic and epizootic

transmission dynamics

The basic reproduction number (R0) is defined as the number of secondary cases that ensue

from a single case in a naïve population. We used the next-generation matrix method [42] on

our SEIR model to estimate R0 values for the various scenarios and to estimate the flea density

per host (m) that would be required to sustain an enzootic or epizootic state (defined here as R0

= 1 and R0 = 2, respectively). With all transmission modes in effect, an m value of five or fewer

fleas per host was sufficient to achieve an enzootic state (R0 = 1) for all the scenarios (Fig 7A).

Fig 7. The number of O. montana fleas per host (m) required to realize different levels of host-to-host transmission

(R0) predicted by the SEIR model, with all transmission modes operative (A); or (B), with only early-phase

transmission (EPT only) or only biofilm-dependent transmission (B/PB only) operative, shown relative to each other

and to cumulative transmission by both modes (All). The results for fleas infected using mouse blood or rat blood and

for three host populations with different susceptibilities to Y. pestis (lethal dose of 1, 10 or 100 CFU) are shown.

Dashed lines indicate the intersects of the curves for R0 = 1 (enzootic) and R0 = 2 (epizootic) conditions.

https://doi.org/10.1371/journal.ppat.1010996.g007
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To reach an epizootic state (R0 = 2), m values of 8, 16, and 20 were estimated from the model,

respectively, for fleas infected using mouse blood with the three host populations (LD of 1, 10,

or 100 Y. pestis CFU). For fleas infected using rat blood, estimated m values required for R0 = 2

were 4, 5, and 11 (Fig 7A).

Flea densities required for enzootic and epizootic conditions were also estimated separately

for early-phase transmission only and for transmission by blocked fleas only. The results from

the SEIR model are shown in Fig 7B. In all cases, the flea burdens required for a given R0 level

were lower for blocked-flea transmission than for early-phase transmission. For example, in a

host population with rat blood characteristics for which the LD = 10 Y. pestis CFUs, 6 fleas per

host were sufficient to drive an epizootic (R0 = 2) by the proventricular blockage mechanism,

whereas early-phase transmission would require ~25 fleas per host. Early-phase transmission

alone was not sufficient for even enzootic maintenance–blocked fleas were required (Fig 7B).

Discussion

In this study we systematically examined flea-borne transmission dynamics during a one-

month period following an infectious blood meal. Cohorts of O. montana fleas were infected

uniformly, using two different host blood sources, and then transmission by individual fleas in

three progressive stages of transmission competence was evaluated. Two aspects of transmis-

sion efficiency were quantified: the probability of transmission and the number of Y. pestis
transmitted during a single flea bite. The standardized experimental design enabled a more

stringent head-to-head comparison of the early-phase and proventricular-blockage dependent

transmission modes. Previous comparisons have depended on separate studies that were not

standardized as to infectious dose, blood source, or the suitability of the experimental condi-

tions for the general fitness of a particular flea species, all of which can affect infection, block-

age rates, and transmission dynamics [16, 23, 29, 30, 33, 40, 43]. Early-phase transmission

dynamics following rat blood meals containing ~109 Y. pestis/ml have been compared with

blocked-flea transmission dynamics following infection by feeding on guinea pigs with a much

lower bacteremia level, such that only a minority of fleas (~20 to 32%) that fed on them became

infected [44–46]. This low infection rate is consistent with a bacteremia of only about 107 Y.

pestis/ml [29, 33], below the threshold for efficient early-phase transmission [43]. Another

problematic area has been the essentially preliminary, and sometimes discordant, available

data on blockage rates of different flea vectors, often based on single trials with small sample

sizes performed under a variety of conditions and lacking important controls [22, 40, 44]. For

example, we recently showed that the prairie dog flea, Oropsylla hirsuta, can become blocked

at a rate much higher than previously reported [47]. Other studies incorrectly reported that O.

montana rarely becomes blocked and transmits beyond the early phase [20, 28, 33, 48]. As

shown here and in previous studies however, O. montana readily becomes blocked and trans-

mits efficiently by the proventricular blockage mechanism [23, 49–51]. Blocked O. montana
are efficient vectors and can transmit large doses of Y. pestis (Fig 3).

The focus of this study was the transmission rate from flea to rodent, which we maximized

by infecting the fleas with blood with the high bacteremia level that has been used for early-

phase transmission efficiency experiments [20, 52, 53]. Because host blood source can influ-

ence infection and early-phase transmission rates [16, 30], we compared fleas infected using

mouse blood or rat blood. Fleas in three transmission-competent states were examined indi-

vidually. Early-phase transmission by fleas infected using mouse blood was rare and inefficient

but was much better if the fleas were infected using rat blood. These results are consistent with

a previous study that evaluated early-phase transmission by groups of fleas [16]. Rat blood pro-

motes early-phase transmission because it induces a phenomenon termed post-infection
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esophageal reflux (PIER), in which a mixture of partially digested blood, hemoglobin crystals,

and Y. pestis is refluxed into the foregut soon after an infectious blood meal [16]. Mouse blood,

characterized by a more soluble hemoglobin molecule and a faster digestion rate in the flea

gut, does not engender PIER. As in the previous study [16], some fleas appeared to be

completely blocked as early as three days after infection using rat blood, suggesting that early-

phase can overlap temporally with biofilm-dependent transmission (Fig 2). For this reason, we

based the early-phase transmission estimate on fleas infected with a Y. pestis hms mutant,

which is incapable of producing proventricular blockage but fully capable of early-phase trans-

mission [17, 24].

A lower percentage of fleas infected using mouse blood developed partial or complete

blockage (Fig 1); but this can be attributed to their lower infection rate compared to fleas

infected using rat blood, consistent with results reported previously [23]. Transmission by par-

tially blocked fleas was surprisingly inefficient, comparable to early-phase transmission, which

may be because the transmission mechanisms are more or less the same (transient or partial

impedance of blood feeding), although partial blockage, unlike early-phase, develops later and

is biofilm-dependent [14, 16, 18]. However, no effect of blood source on transmission by par-

tially blocked fleas was evident. Transmission by completely blocked fleas was the most effi-

cient of the three stages, both in terms of transmission rate and the number of CFUs

transmitted per flea (Fig 3). At this stage also, no difference was apparent between blocked

fleas infected using mouse or rat blood. After their 1-h feeding attempts, 50 to 67% of individ-

ual blocked fleas had transmitted, and ~10% of these transmitted >1,000 CFUs, with>10,000

CFU recovered in three instances. On average, the number of CFU transmitted by a blocked

O. montana flea is greater than the number transmitted by a blocked Xenopsylla cheopis flea

[23, 29].

A second aspect of this study was to use the experimentally derived transmission efficiency

data to parameterize an SEIR model of plague dynamics that we developed. Here the main

goal was to compare the relative importance and contribution of the early-phase and proven-

tricular blockage-dependent transmission modes in determining epizootic outbreaks. The

model outputs indicated that blockage-dependent transmission was most important in pro-

ducing epizootics, regardless of host blood source. Our modeling indicated that early-phase

transmission alone resulted in significantly less mortality, and a large effect of host blood

source was evident. Early-phase fleas infected using rat blood could drive an epizootic, but

only in the most susceptible host population (LD = 1 CFU). Early-phase transmission by fleas

infected using mouse blood was insufficient by itself to produce epizootic conditions in any

host population.

Model parameter values were estimated on an individual flea bite basis. However, a feature

of flea-borne transmission in nature is that several infected fleas feeding simultaneously on a

single host in the early-phase window, or a blocked flea making repeated feeding attempts in

succession can produce an augmented, cumulative transmission efficiency. For example, a

blocked flea will bite continuously and persistently in the few days before it dies from starva-

tion; and blocked flea transmission efficiency estimates based on single, short term exposure

trials are acknowledged to be underestimates [8, 28]. The probability of a blocked flea cumula-

tively transmitting significant numbers of CFUs in repeated bites likely approaches 100%. In

contrast, early-phase transmission is primarily limited to the first feeding after infection, with

reduced transmission during later feeds unless reinfected [52]. Therefore, in a second version

of the model we incorporated a specific scenario for effective efficiency of cumulative early-

phase transmission (simultaneous bites by 10 fleas modeled) and also of blocked-flea transmis-

sion (conservatively, 2 consecutive bites by a single blocked flea modeled). In this version of

the model, early-phase transmission by fleas infected using mouse blood was sufficient to drive
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an epizootic, but only in the most susceptible population (LD = 1 CFU). Early-phase transmis-

sion by fleas infected using rat blood was sufficient to drive an epizootic in hosts in which the

lethal dose was 10 CFU or less. In either version of the model, however, early-phase transmis-

sion was incapable of driving an epizootic in a more resistant population (LD = 100 CFU),

which is more representative of most wild rodents. Blockage-dependent transmission was

essential for epizootic scenarios in those populations. Notably, predicted mortality increased

when early-phase transmission was set to zero, whereas the number of recovered hosts was

higher when both transmission modes were operative. This suggests that early-phase transmis-

sion would act to dampen outbreaks in more resistant populations because the sublethal doses

usually delivered lead to recovery and immunity rather than disease. In a previous experiment

in which laboratory mice were fed on by 3 to 12 infected O. montana early-phase fleas, the

majority of transmissions were detected by seroconversion only [27]. Thus, blocked flea trans-

mission is likely the driving force behind epizootics in moderately resistant populations. Based

on some prior reports that O. montana rarely becomes blocked, this mode of transmission was

discounted a priori in an earlier model of plague dynamics as vectored by this flea [54]. Our

results show that this needed to be reevaluated, because in this and a previous study [23] we

show that blockage-dependent transmission by O. montana is more efficient than early-phase

transmission. In accordance, another study reported that O. montana transmits at higher effi-

ciency 7 to 21 days after infection than in the early phase [25].

The higher vector competence of blocked O. montana fleas was also reflected in the esti-

mated flea burden required to drive an epizootic, which was lower than for early-phase trans-

mission, particularly in a more resistant host population (Fig 7B). The value we estimated for

early-phase transmission by O. montana infected using rat blood and a susceptible population

was similar to a previous estimate for X. cheopis that used the same infection scenario [40].

That study came to an opposite conclusion than we did for blocked flea transmission, main-

taining that the flea burden would have to be higher than for early-phase transmission. How-

ever, the parameter values for blocked flea transmission were based on a single separate study

in which the fleas were infected by feeding on mice with varying levels of bacteremia, such that

their blockage rate was only 7% [33]. When X. cheopis feed on highly bacteremic blood, as

used for the early-phase experiments, however, several studies have shown that the blockage

rate is 35 to 40% or higher [18, 23, 24, 28, 29, 55–58].

Early-phase transmission, although the first mode of transmission to be described, received

relatively little attention after the blockage-dependent transmission mode was discovered.

Some, however, proposed that early-phase transmission could add momentum to an epizootic

when the plague incidence was high enough to reduce a population size, leading to increased

flea burdens on remaining hosts [28, 59]. According to this scenario, the large number of

questing fleas that had last fed on a host that died from plague septicemia could transmit when

they next fed a new host in a phenomenon called mass transmission (the original name for

early-phase transmission, reflecting the fact that many fleas feeding simultaneously are

required for a high probability of transmission). Our results also indicate that a high flea bur-

den is required for productive early-phase transmission. Transmission by blocked and partially

blocked fleas was still considered to be essential for stable ecological maintenance of flea-borne

plague [28, 60]. This premise is supported by the fact that all Y. pestis strains maintain the

genes required for flea biofilm formation, even though they are not required for virulence in

mammals [24, 61, 62]. A previous theoretical modeling study also concluded that gaining the

ability to block fleas was evolutionarily adaptive for Y. pestis because transmissibility is supe-

rior to that of unblocked (e.g. early-phase) fleas [63].

More recently, a series of studies concluded that early-phase transmission might be the

principal driving force of epizootics, particularly in rodent-flea cycles in which the primary
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flea vector reportedly develops proventricular blockage at low incidence (reviewed in [21]).

These conclusions were based on transmission results with highly susceptible laboratory

mice challenged by groups of ~10 fleas that had been infected 1 to 4 days earlier by feeding

on highly bacteremic rat blood. Our simulations also indicate that early-phase transmission

could be sufficient to drive an epizootic in those conditions. However, early-phase transmis-

sion varies with host blood–it is less efficient following infection with bacteremic mouse

blood, (Fig 3; [16]), and may be important in driving epizootics only with hosts whose blood,

like that of brown rats, induce PIER in fleas. Furthermore, most wild rodents are more resis-

tant to Y. pestis than laboratory mice. For example, the LD50 of Y. pestis for the ground squir-

rel hosts of O. montana is reportedly at least 250 to >1,000 CFU [64–66], although this value

is likely to vary locally as well as within a given population. It is not known whether transmis-

sion efficiency in conjunction with ground squirrel blood would be more like mouse or rat

blood, and it will be important to examine that in future studies. In either case, our results

suggest a different ecological role for early-phase transmission within most rodent popula-

tions. By transmitting a sublethal dose, early transmission may serve to increase the number

of resistant individuals in a population in which plague is introduced, in a sense vaccinating

them against an otherwise lethal challenge by the later, more efficient transmission by

blocked fleas.

Long-term focal persistence of plague requires stable host-pathogen dynamics to maintain

an enzootic state. A pathogen as virulent as Y. pestis, which depends on producing a lethal,

high-density bacteremia in the host to infect its flea vectors would seemingly be at risk of burn-

ing through host populations too quickly for stable ecological maintenance. This epizootic sce-

nario can occur in the most susceptible hosts. However, our models suggest that exposure of

most wild rodents to sublethal, immunizing doses of Y. pestis transmitted during the early

phase may ameliorate rapid epizootic spread by reducing the number of susceptible individu-

als in the population. The coexistence of resistant and susceptible hosts in a population has

long been thought to be a factor in the enzootic persistence of plague despite its high virulence

[11]. Thus, in many situations early-phase transmission may be more important in maintain-

ing the enzootic state than in driving an epizootic. The effect of early-phase transmission in

generating partially immune populations would also increase the time span of enzootic preva-

lence, during which the movement of individuals could spread the disease to new populations

in new areas [67].

Summary

Transmission efficiency of individual O. montana fleas was measured over a four-week period

after they had fed on mouse or rat blood containing 5 to 8 x 108 Y. pestis/ml. Both early-phase

and proventricular blockage modes of transmission were monitored for cohorts of fleas follow-

ing a single infectious blood meal. The results indicate that: 1) blockage-dependent transmis-

sion is much more efficient than early-phase transmission, both in terms of the probability of

transmission and the number of CFUs transmitted. The recurrent biting behavior of blocked

fleas is a significant force multiplier of transmission [68], as a single blocked flea can cumula-

tively transmit thousands of CFUs before it dies of starvation. 2) Host blood source strongly

affects early-phase transmission efficiency, but not blockage-dependent transmission effi-

ciency. However, host blood source can influence the infection rate and therefore the subse-

quent blockage rate. 3) Early-phase transmission could drive an epizootic only in naïve, very

susceptible host populations and when the flea burden is high. 4) The low CFU numbers typi-

cally transmitted in the early phase may “immunize” many individuals of more resistant host

species, acting to limit epizootic spread and promote an enzootic state.
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Materials and methods

Ethics statement

Fleas were from colonies maintained according to a protocol approved by the Institutional

Animal Care and Use Committee of the Rocky Mountain Laboratories (RML) [23]. Animal

work adhered to the institution’s guidelines for animal use, the guidelines and principles in the

United States Public Health Service Policy on Humane Care and Use of Laboratory Animals,

and the Guide for the Care and Use of Laboratory Animals and was conducted by certified

staff in an Association for Assessment and Accreditation of Laboratory Animal Care (AAA-

LAC) International accredited facility.

Flea infections

O. montana fleas were from a laboratory colony originally established at the CDC, Fort Collins

[69] and maintained at RML since 2011. Groups of ~300 O. montana that had not fed for 5

days were infected by allowing them to feed on 5 ml of defibrinated mouse or rat blood con-

taining 5 to 8 × 108 CFU/ml of Y. pestis KIM6+ with pAGFP1 (Clontech/Takara Bio) a plasmid

that encodes the green fluorescent protein and carbenicillin-resistance or with KIM6+ ΔhmsH
(pAcGFP1) through a Parafilm M membrane stretched across an artificial feeding device, fol-

lowing a previously established standard protocol [23, 70, 71]. The pAcGFP1 plasmid is stably

maintained by Y. pestis in infected fleas for at least 31 days in the absence of antibiotic pressure.

After a 1-h feeding period, fleas were individually examined microscopically, and those that

took an infectious blood meal (denoted by the presence of fresh red blood in the midgut) were

collected; 20 of them were placed at -80˚C for later determination of the initial infectious dose

and the rest were placed in capsules containing a layer of sawdust and maintained at 21˚ C,

75% relative humidity [23].

Evaluation of flea infection, mortality, blockage, and transmission rates

after infection

To assess early-phase transmission, 12–48 individual fleas (equal numbers of males and

females) were allowed to feed for 1 h on ~300 μl of sterile defibrinated mouse or rat blood (cor-

responding to the infectious blood meal source), using miniaturized versions of the artificial

feeding device, on days 2 to 4 after infection [71]. Each flea was then examined for evidence of

feeding and for partial or complete proventricular blockage [24]. Partial blockage is diagnosed

by the presence of fresh blood in the esophagus and midgut and complete blockage by the

presence of fresh blood only in the esophagus, usually pooled just anterior to the proventricu-

lus [71]. The blood in the individual reservoirs was removed and spread onto blood agar plates

containing 100 μg/ml carbenicillin. CFUs were counted after 48 h at 28˚ C to determine the

number of bacteria transmitted. Fleas that fed were individually frozen at -80˚C for subsequent

bacterial load determinations.

All other fleas that took an infectious blood meal were provided maintenance feeds twice

weekly (Monday and Thursday) beginning 2 to 4 days after infection for one month on a neo-

natal mouse or on sterile defibrinated rat blood in the same feeding system used to infect

them. After the 1-h feeding period fleas were individually examined and the feeding rate and

the incidence of partial or complete proventricular blockage was recorded. Flea mortality was

also recorded throughout the experiment, and samples of 20 fleas were removed at 7, 14, and

30 days after infection and frozen for bacterial load determination. Fleas showing signs of par-

tial or full blockage were removed from the group and stored separately. These partially and

completely blocked fleas were permitted to feed individually on a miniaturized artificial feeder
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every 1 to 3 days, and evidence of feeding, proventricular blockage status, and mortality were

determined each time. Blood was collected from the reservoirs corresponding to those fleas

that showed evidence of feeding or attempted feeding and plated to determine the number of

CFUs transmitted. Transmissions by the same partially or completely blocked flea on multiple

days were each considered as separate transmission events. Between-group differences in

transmission probability and number of Y. pestis CFU transmitted were analyzed by chi-

square and Mann-Whitney test, respectively (GraphPad Prism 9 software).

To determine infection rates and the average bacterial load per infected flea, samples of 20

fleas that had been collected and stored at -80˚C at different times after the infectious blood

meal were thawed, surface-sterilized, individually triturated in PBS, and dilutions plated in

BHI soft agar overlays for CFU counts (lower limit of detection = 40 CFU/flea) as previously

described [70, 71].

Deterministic host-vector model

We developed a continuous time, deterministic model formulated to reflect the dynamics of

infection in the vector population as they relate to progression of disease in reservoir hosts

(Fig 5). The model is based on Bailey’s single host-single vector and Ross-Macdonald models

[72, 73] and uses ordinary differential equations to describe the flow of individual vertebrate

hosts and vectors through different infection categories (S1 Text). Our model is focused on

understanding the relative contribution of the three transmission-competent states of infection

in fleas to the dynamics of infection in a host population. Thus, we did not include a birth rate

for either flea or rodent compartments.

The flea vector compartment follows a susceptible-infected (SI) pattern with the infected

state divided into three successive transmission-competent stages: early-phase (Iep; here defined

as the first four days after the infectious blood meal), partially blocked (Ipb), and completely

blocked (Ib) [14, 23]. Additionally, we account for the subset of fleas that clear themselves of

infection but that may become reinfected. However, there is no final recovery state because the

endstage of biofilm development in the flea (complete blockage) is invariably fatal.

Hosts follow a susceptible-exposed-infected-recovered (SEIR) pattern of disease; however,

the exposed-recovered progression is disjointed from the development of overt disease. When

the number of CFUs transmitted is less than a lethal dose (LD), we expect that a susceptible

host will resolve the infection and recover without ever developing the terminal, high-density

bacteremia (>107 Y. pestis/ml of peripheral blood) that is required to reliably infect fleas that

feed on it [29, 33, 43]. Thus, transmission by fleas in any of the three transmission-competent

stages (Iep, Ipb, Ib) to a susceptible host can lead to either exposed but never infectious stages

(E, R), or to an infectious stage (I) characterized by a fatal bacteremia. We also included a

latent stage (L) prior to the infectious stage to account for the time to develop high bacteremia

after transmission.

Transmission parameter values and conditions for model simulations

Model simulations were performed using the programming language R [74] and were based

on parameters generated from experimental results reported here or derived from literature

sources. To simulate the cumulative transmission by 10 infected fleas feeding simultaneously

in an early-phase challenge, the probability of transmission was calculated as 1 - (1- pep)10 and

the probability of transmitting a lethal dose was calculated as 1 - (1- tep)10, with pep and tep

being the probabilities for a single flea bite (Table 2). It was further assumed that an individual

blocked flea would (conservatively) make at least two successive feeding attempts, and the pb

and tb values were similarly adjusted to 1 - (1- pb)2 and 1 - (1- tb)2.
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Simulation conditions were set for 100 days at 0.3-day time steps to capture acute infection

dynamics. The flea population is represented by O. montana, and host populations with differ-

ent susceptibilities (LD100 = 1, 10 or 100 Y. pestis CFUs) were considered. Model populations

consisted of 10 hosts (1 bacteremic and 9 uninfected) and 50 uninfected fleas. When infected

and dead hosts exceeded 50%, we considered the infection scenario an epizootic. Conversely,

when more hosts survived than died from infection, we classified the infection as enzootic. See

S1 Text for details of the model and R code.

To understand the role of the different modes of flea-borne transmission of Y. pestis in

maintaining enzootic levels of the pathogen versus stimulating epizootic bursts, we evaluated

all flea transmission states together and then systematically compared the individual capacity

of early-phase transmission to transmission by blocked/partially blocked fleas by artificially

setting one or the other transmission probabilities to zero.

Estimation of flea density required for enzootic and epizootic transmission

We formulated an expression for R0 from our model using the next-generation matrix method

[42]. See S1 Text for details and R code. Based on our parameter estimates (Tables 2 and 3, and

Fig 3), the number of fleas per host (m) that would be required for an enzootic (R0 = 1) or epi-

zootic (R0� 2) was calculated.
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