
Estimating the Parameters of a Pareto Distribution
Introducing a Quantile Regression Method

Joseph Lee Petersen

Introduction. A broad approach to using correlation coefficients for pa-
rameter estimation and not merely as descriptive statistics has been devel-
oped. [1,2,3,4] It was a goal of this project to extend these ideas specifically
to estimating the parameters of the Pareto distribution. In this paper we
will recall the definition of the Pareto distribution, some basic properties,
and some previously developed methods of estimating the parameters of the
Pareto distribution from which a random sample comes. We will introduce
a new parameter estimation scheme based on correlation coefficients. Fi-
nally, we will study and compare the performance of each of the parameter
estimation schemes.

1 The Pareto Distribution

The Pareto Distribution was first proposed as a model for the distribution
of incomes. It is also used as a model for the distribution of city populations
within a given area. The Pareto distribution is defined by the following
functions:

CDF: F (x|α, k) = 1−
(

k

x

)a

; k ≤ x < ∞; α, k > 0

PDF: f(x|α, k) =
αkα

xα+1
; k ≤ x < ∞; α, k > 0

The first parameter marks a lower bound on the possible values that a Pareto

distributed random variable can take on. To illustrate we can see in figure 1
a plot of the density of a Pareto(1, 1) random variable.

A few well known properties follow:
E(X) = α k/(α− 1), α > 1
V ar(X) = α k2/[(α− 1)2 (α− 2)], α > 2
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2 Parameter Estimation

We are interested in estimating the parameters of the Pareto distribution
from which a random sample comes. We will outline a few parameter esti-
mation schemes.

2.1 Method of Moments

We actually modify the usual method of moments scheme according to a
method laid out in Johnson and Kotz[5]. If we set the sample mean equal
to the distribution’s theoretical expected value mentioned above and if we
set the sample minimum, x1, equal to the theoretical expected value of the
minimum of a size n sample of Pareto(k,α) random variables, we obtain two
equations and two unknowns:

x̄ =
α̃k̃

(α̃− 1)

x1 =
nα̃k̃

nα̃− 1

Solving these equations yields the following estimators:

α̃ =
nx̄− x1

n (x̄− x1)

k̃ =
(nα̃− 1) x1

nα̃

2.2 Median Estimator

As far as the author knows, this is a new estimator. The idea is that in
method of moments we set the sample mean equal to the theoretical mean,
so here we will set the sample median equal to the theoretical median. Many
of the estimation schemes discussed in this paper were first studied in the
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case where k was known to be equal to one, so that it was only α that needed
to be estimated. In this case we can see from the CDF above that if x = ms,
the median of the sample, we can estimate α as follows:

1−m−α̃
s = 0.5

=⇒ α̃ =
ln 2

ln ms

It is likely though that we will be interested in many cases in which k is not
equal to one, so if we already have an estimate for k, call it kest, we will make
the following adjustment to this estimate for α:

α̃ =
ln 2

ln
(

ms

kest

)
For the purposes of analyzing the performance of this estimator, we will use
the minimum sample value as the estimate for k.

2.3 Maximum Likelihood

The likelihood function, L, for the Pareto distribution has the following form:

L(k, α|x) =
n∏

i=1

α kα

xα+1
i

; 0 < k ≤ min{xi}, α > 0

Recall that the likelihood function tells as a function of the distribution
parameters how likely it is to have observed the data that we did in fact
observe. The maximum likelihood estimates for k and α are the values of k
and α that make L as large as possible given the data we have. The most
familiar method of maximizing functions involves calculus. However, we need
no calculus to see that L gets large beyond bound for increases in k. It is
key then to recall that k can be no larger than the smallest value of x in our
data, so the best we can do in maximizing L by adjusting k is as follows:

k̂ = min{xi}

In order to find the maximum likelihood estimate for α, calculus is appropri-
ate. Since L is nonnegative, we can take its logarithm. We do this because
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it is easier to differentiate log L than L itself. Logarithms are bijective func-
tions, so the value of α that maximizes L also maximizes log L. The process
in brief looks like this:

log L(k, α|x) =
n∑

i=1

log

(
α kα

xα+1
i

)

= n log(α) + α nlog(k)− (α + 1)
n∑

i=1

log(xi)

=⇒ d

dα
= n/α + n log(k)−

n∑
i=1

log(xi)

Setting the derivative equal to zero, a little algebra and an omitted second
derivative check to confirm we are maximizing L rather than minimizing L
yields:

α̂ = n/
n∑

i=1

log

(
xi

k̂

)

2.4 Correlation Coefficients

Gideon[4] has shown using a correlation based interpretation of linear re-
gression that the mean and standard deviation for a normally distributed
data set of size n can be estimated by regression of the sorted data on the
1st through nth (n + 1)-tiles of the standard normal. In such a regression,
the intercept of the fitted linear model serves as an unbiased estimate of the
mean of the distribution from which the data came, and the slope of the fitted
linear model serves as an unbiased estimate of the standard deviation. This
quantile regression estimation scheme not only is appropriate for normally
distributed data though, but rather it works for distributions from any scale
regular family.1

The connection between regression and correlation is laid out explicitly
in Gideon[4]. We will describe the connection here in brief. The value of s

1A scale regular family is a family of distributions such that for any member in the
family there is a scalar that can multiply the member to yield another member in the same
family with unit variance. A common example of the use of the scale regular property of
a scale regular family is standardizing a Normally distributed random variable.
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that satisfies the following equation (See Gideon[1,2,3,4]) estimates standard
deviation:

r(q, uo − sq) = 0

where q is a vector of the 1st through nth (n + 1)-tiles of the standard
distribution, n is the sample size of the data, uo is a vector of the ordered
data, and r is any correlation coefficient. When r is Pearson’s correlation, the
solution is exactly the least squares estimate of the slope of a linear model.
As for an estimate of the model intercept, if r is Pearson’s, the estimate is
ū0 − sq̄. If r is Kendall’s r or the Greatest Deviation Correlation Coefficient
(See Gideon[2]), the estimate of intercept is median(u0)−s median(q). Again
if r is Pearson’s correlation coefficient, the solution is exactly the least squares
line. However, it is important to note that r need not be Pearson’s r, but
rather other correlation statistics will yield estimates, with perhaps more
desirable properties, of the slope and intercept of the line.

We will now describe how these ideas can be applied to the Pareto distri-
bution. Let X be a Pareto(α,k) distributed random variable. Then U = ln X
is a two-parameter Exponentially distributed random variable with parame-
ters λ and θ. That is U has probability density function f(u) =

(
1
λ

)
e−(u−θ)/λ,

where λ = 1/α and θ = lnk. Its expected value is λ+θ or in terms of the orig-
inal Pareto random variable, 1/α+ ln k, and its variance is λ2 or 1/α2. (This
means the standard deviation is 1/α.) It should be noted now that the Ex-
ponential distributions are a scale regular family. Now the random variable
Z = αU will be rather a ”standard” Exponential with probability density
function f(z) = e−(z−θ) and so cumulative density function F (z) = 1−e−(z−θ).

These facts suggest that if we log transform data which we hypothesize
to be Pareto distributed, we can solve r(q, u0−sq) = 0, q being the quantiles
of the standard Exponential, to get an estimate of the scale parameter for
the Exponential distribution to which the log transformed Pareto data cor-
responds, and the appropriate center measure, i, of the uncentered residuals
will give an estimate of the location parameter of the Exponential distribu-
tion to which the log transformed Pareto data corresponds. In order to turn
these estimates back in terms of the Pareto parameters, we estimate k by ei

and α by 1/s. In our studies we used Pearson’s r and the Greatest Deviation
Correlation Coefficient (See Gideon[1,2]) to evaluate the performance of this
estimation scheme.
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3 An Example

We used the probability integral transformation to write a function in SPlus
that would generate random samples of Pareto distributed data. For this
example we generated a size 100 sample from a Pareto(1, 0.5) distribution.
We can see a histogram of this data in figure 2.

We’ve truncated the histogram in order to compare it to the density plot
in Figure 1, and because there are some extreme outliers that would have
made the histogram not useful had they been included. (The max was 5715
and the next highest was 1581.) The next plot shows the sorted logarithm
transformed data plotted as a function of the first through 100th 101-tiles of
an Exponential(1) random variable.

The dotted line is a least squares regression line. The solid line is a
Greatest Deviation based regression line. The intercept and slope of the least
squares line are 0.126 and 2.006 which imply estimates for k and α of 1.134
and 0.498. The intercept and slope of the GD line are 0.023 and 2.139 which
imply estimates for k and α of 1.023 and 0.467. Method of moments estimates
k = 1.025 and α = 1.009 It is important to note how horribly method
of moments does in estimating α. The reason for this is that the integral
defining variance for a Pareto distribution does not converge if α is less than
or equal to two, and similarly the integral defining the distribution’s mean
is infinite if α is less than or equal to one. This means that the distribution
is prone to extreme outliers. The limit of α̃ as x̄ goes to infinity is one,
so one extreme outlier can yield an estimate of one for α. The maximum
likelihood estimates are k = 1.035 and α = 0.487. The median estimate for
α assuming a k estimate of kmin (1.035) is 0.504. Finally to illustrate the
equation r(q, uo−sq) = 0 we can see a plot of r(q, uo−sq) as a function of s.
Remember u0 is actually the logarithm of the sorted presumed Pareto data
and hence is distributed Exponentially.

The value of s where the graph crosses the s axis is the correlation esti-
mate of the standard deviation of the Exponential distribution. Our estimate
of α is 0.498 which was obtained more precisely than can be done looking at
a graph using a midpoint algorithm. Recall that solving the correlation func-
tion is embedded in the least squares regression. This is why the correlation
estimate is the same as that from the LS regression.
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4 Estimator Performance

It was interesting to see one example, but to truly evaluate the performance
of estimators, we need to do some simulations. Our simulations were done by
setting a value for k and α. SPlus generated a size 100 sample of Pareto(k,
α) data and estimated k using one of the parameter estimation schemes we
discussed earlier. It repeated 1000 times. The mean, median, standard error
(SE) of those 1000 estimates were computed. The estimated bias was calcu-
lated as the mean minus the true value of the parameter. The mean squared
error (MSE) was calculated as the bias squared plus the SE squared. This
process was repeated for α using the same estimation scheme and the same
values of k and α to generate the random samples. When all the estimation
schemes were tested, the entire process was repeated using different values
of k and α to generate the data. We tested for values of k at 1, 1,000, and
1,000,000, and for each value of k, we tested for values of α at 0.1, 1, 10, 100,
and 1,000. The estimation schemes were GDCC based quantile regression
for k (GDqk), GDCC based quantile regression for α (GDqα), Least squares
based quantile regression for k (LSqk), Least squares based quantile regres-
sion for α (LSqα), method of moments for k (momk), method of moments
for α (momα), maximum likelihood for k (MLk), maximum likelihood for α
(MLα), median estimator for α assuming k = xmin (medα), and a Pearson’s
correlation based estimate for α. For the purposes of reporting in this paper,
SPlus rounded all results to 3 digits as per its significant digits function.
The results of one simulation can be found here. The output for the other
fourteen simulations can be found at the end of the paper.

Simulation Statistics for Pareto(1,0.1)

(1, 0.1) Mean Median SE Bias MSE
GDqk 1.1200 0.9600 6.44e-01 0.12100 0.429000
GDqα 0.1010 0.1000 1.19e-02 0.00133 0.000144
LSqk 1.1100 0.7780 1.08e+00 0.10500 1.190000
LSqα 0.0971 0.0964 1.29e-02 -0.00293 0.000175
momk 1.1000 1.0600 1.24e-01 0.10400 0.026100
momα 1.0000 1.0000 1.42e-12 0.90000 0.810000
MLk 1.1100 1.0700 1.23e-01 0.10700 0.026500
MLα 0.1020 0.1010 1.02e-02 0.00183 0.000108
medα 0.1040 0.1020 1.55e-02 0.00354 0.000254
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5 Results

Something very fascinating is revealed in looking at all the output. The
method of moments approach, despite being totally inappropriate for esti-
mating α, performed consistently best as an estimator for k. There were only
two instances in which the GD based quantile regression method was less bi-
ased (k = 1000 and α = 100, k = 1, 000, 000 and α = 1) than method of
moments and one instance (k = 1, 000, 000 and α = 0.1) in which maximum
likelihood yielded a smaller MSE.

As for estimating α, the trend seemed to be that the GD based quantile
regression estimator was in all cases the least biased estimator and maximum
likelihood yielded the least MSE for low values of α while method of moments
yielded the least MSE for high values of α.

6 Conclusion

Among the estimators studied, method of moments clearly performed the
best for estimating k. While this is interesting theoretically, it could be less
interesting practically. On page 242 Johnson and Kotz[5] say that the Pareto
distribution serves well as a model for incomes at the extremities, but not as
well over the entire range of income levels. We are guessing then that if one
were to try to fit a Pareto model to a set of data, he would first through other
means determine at what value k the Pareto model takes over and then only
be interested in the power parameter α that models the data greater than
k. However if one would need to estimate k, we recommend the method of
moments estimator.

As for estimating α, the Greatest Deviation based quantile regression
showed to be the least biased estimator, but it generally had a 20% greater
standard error than maximum likelihood. Maximum likelihood yielded smaller
mean squared error than the Greatest Deviation based quantile regression
over the parameter values we studied. If one needs an unbiased estimator,
we recommend the Greatest Deviation based quantile regression estimator.
If small MSE is desired, we recommend maximum likelihood estimation.

Part of the motivation for this project was to develop a parameter esti-
mation scheme for the Pareto distribution that fits into the broader subject
of using correlation statistics for parameter estimation and not merely as
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descriptive statistics. So far the quantile regression approach has only been
applied to symmetric distribution such as Normal, Gosset’s t, and Cauchy.
We see that correlations, specifically in the case of the Greatest Deviation
Correlation Coefficient, can produce good estimates for skewed distributions.
The GD quantile regression approach produced estimates for α that were rel-
atively unbiased.
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7 Complete Simulation Output

Simulation Statistics for Pareto(1, 1)
(1, 1) Mean Median SE Bias MSE

GDqk 1.000 0.999 0.05020 0.00366 0.002530
GDqα 1.000 0.998 0.12200 0.00390 0.014900
LSqk 0.971 0.969 0.08990 -0.02870 0.008900
LSqα 0.962 0.958 0.13100 -0.03790 0.018600
momk 1.000 0.999 0.01030 0.00164 0.000109
momα 1.190 1.180 0.10100 0.18900 0.045800
MLk 1.010 1.010 0.00949 0.00983 0.000187
MLα 1.020 1.010 0.10400 0.02030 0.011200
medα 1.020 1.010 0.15400 0.02440 0.024400

Simulation Statistics for Pareto(1, 10)

(1, 10) Mean Median SE Bias MSE
GDqk 1.000 1.000 0.005000 .000282 2.51e-05
GDqα 10.000 9.960 1.220000 0.033800 1.49e+00
LSqk 0.997 0.997 0.009230 -0.003360 9.64e-05
LSqα 9.670 9.550 1.340000 -0.334000 1.92e+00
momk 1.000 1.000 0.001010 0.000007 1.02e-06
momα 10.100 10.000 1.040000 0.085700 1.08e+00
MLk 1.000 1.000 0.000914 0.000978 1.79e-06
MLα 10.200 10.100 1.020000 0.202000 1.07e+00
medα 10.300 10.100 1.500000 0.253000 2.31e+00

Simulation Statistics for Pareto(1, 100)

(1, 100) Mean Median SE Bias MSE
GDqk 1.0 1.0 5.03e-04 1.80e-05 2.53e-07
GDqα 100.0 99.1 1.23e+01 3.71e-01 1.51e+02
LSqk 1.0 1.0 9.32e-04 -2.85e-04 9.50e-07
LSqα 96.0 94.9 1.27e+01 -4.00e+00 1.78e+02
momk 1.0 1.0 9.33e-05 -9.00e-07 8.71e-09
momα 101.0 99.7 1.02e+01 6.77e-01 1.05e+02
MLk 1.0 1.0 9.84e-05 1.03e-04 2.03e-08
MLα 102.0 101.0 1.01e+01 2.30e+00 1.08e+02
medα 103.0 102.0 1.48e+01 3.03e+00 2.28e+02
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Simulation Statistics for Pareto(1, 1000)

(1, 1000) Mean Median SE Bias MSE
GDqk 1 1 4.50e-05 3.00e-06 2.04e-09
GDqα 1010 1000 1.24e+02 1.03e+01 1.56e+04
LSqk 1 1 9.59e-05 -3.17e-05 1.02e-08
LSqα 970 965 1.30e+02 -3.00e+01 1.79e+04
momk 1 1 1.02e-05 0.00e+00 1.03e-10
momα 1010 1010 1.03e+02 1.27e+01 1.08e+04
MLk 1 1 9.33e-06 9.00e-06 1.68e-10
MLα 1020 1010 1.07e+02 1.72e+01 1.17e+04
medα 1030 1020 1.51e+02 2.65e+01 2.36e+04

Simulation Statistics for Pareto(1000, 0.1)

(1000, 0.1) Mean Median SE Bias MSE
GDqk 1.14e+03 9.66e+02 6.72e+02 1.38e+02 4.71e+05
GDqα 1.01e-01 1.00e-01 1.19e-02 8.77e-04 1.43e-04
LSqk 1.13e+03 7.61e+02 1.19e+03 1.34e+02 1.44e+06
LSqα 9.66e-02 9.56e-02 1.32e-02 -3.36e-03 1.87e-04
momk 1.10e+03 1.06e+03 1.13e+02 9.63e+01 2.20e+04
momα 1.00e+00 1.00e+00 1.42e-12 9.00e-01 8.10e-01
MLk 1.11e+03 1.07e+03 1.33e+02 1.12e+02 3.03e+04
MLα 1.02e-01 1.01e-01 1.02e-02 1.88e-03 1.08e-04
medα 1.03e-01 1.02e-01 1.54e-02 3.29e-03 2.49e-04

Simulation Statistics for Pareto(1000, 1)

(1000, 1) Mean Median SE Bias MSE
GDqk 1000.000 997.000 49.500 1.9500 2.46e+03
GDqα 1.000 0.992 0.120 0.0017 1.43e-02
LSqk 974.000 975.000 91.800 -25.6000 9.08e+03
LSqα 0.961 0.950 0.130 -0.0394 1.84e-02
momk 1000.000 998.000 11.100 1.8600 1.27e+02
momα 1.190 1.180 0.102 0.1900 4.63e-02
MLk 1010.000 1010.000 9.760 9.8200 1.92e+02
MLα 1.020 1.010 0.106 0.0200 1.17e-02
medα 1.030 1.010 0.152 0.0295 2.40e-02
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Simulation Statistics for Pareto(1000, 10)

(1000, 10) Mean Median SE Bias MSE
GDqk 1000.00 1000.00 4.89 0.0960 23.90
GDqα 10.10 9.96 1.24 0.0937 1.54
LSqk 997.00 998.00 9.33 -2.6300 93.90
LSqα 9.67 9.57 1.36 -0.3310 1.95
momk 1000.00 1000.00 1.04 0.0330 1.07
momα 10.20 10.10 1.05 0.1810 1.13
MLk 1000.00 1000.00 1.03 0.9630 1.98
MLα 10.20 10.20 1.02 0.2290 1.10
medα 10.30 10.10 1.54 0.3070 2.45

Simulation Statistics for Pareto(1000, 100)

(1000, 100) Mean Median SE Bias MSE
GDqk 1000.0 1000.0 0.4870 0.0020 2.38e-01
GDqα 101.0 100.0 12.0000 0.9540 1.46e+02
LSqk 1000.0 1000.0 0.8930 -0.2640 8.66e-01
LSqα 96.2 95.1 12.7000 -3.7900 1.76e+02
momk 1000.0 1000.0 0.0996 -0.0028 9.93e-03
momα 102.0 101.0 10.1000 1.6300 1.04e+02
MLk 1000.0 1000.0 0.0976 0.1020 1.99e-02
MLα 102.0 102.0 10.0000 2.2800 1.06e+02
medα 103.0 101.0 15.3000 2.6900 2.42e+02

Simulation Statistics for Pareto(1000, 1000)

(1000, 1000) Mean Median SE Bias MSE
GDqk 1000 1000 0.0490 0.002 2.41e-03
GDqα 1000 994 126.0000 3.770 1.59e+04
LSqk 1000 1000 0.0951 -0.029 9.88e-03
LSqα 963 955 128.0000 -36.800 1.78e+04
momk 1000 1000 0.0098 0.000 9.61e-05
momα 1010 999 107.0000 7.490 1.15e+04
MLk 1000 1000 0.0107 0.010 2.14e-04
MLα 1020 1010 102.0000 15.200 1.07e+04
medα 1020 1010 146.0000 19.500 2.17e+04
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Simulation Statistics for Pareto(1mil, 0.1)

(1mil, 0.1) Mean Median SE Bias MSE
GDqk 1.23e+06 1.00e+06 8.63e+05 2.26e+05 7.96e+11
GDqα 1.00e-01 9.94e-02 1.20e-02 1.67e-04 1.43e-04
LSqk 1.12e+06 7.92e+05 1.11e+06 1.25e+05 1.24e+12
LSqα 9.64e-02 9.56e-02 1.24e-02 -3.56e-03 1.67e-04
momk 1.10e+06 1.06e+06 1.23e+05 1.01e+05 2.53e+10
momα 1.00e+00 1.00e+00 1.31e-12 9.00e-01 8.10e-01
MLk 1.11e+06 1.07e+06 1.16e+05 1.05e+05 2.44e+10
MLα 1.02e-01 1.02e-01 9.98e-03 2.45e-03 1.06e-04
medα 1.03e-01 1.02e-01 1.55e-02 2.96e-03 2.50e-04

Simulation Statistics for Pareto(1mil, 1)

(1mil, 1) Mean Median SE Bias MSE
GDqk 1.00e+06 9.96e+05 4.90e+04 -4.58e+02 2.40e+09
GDqα 1.01e+00 9.98e-01 1.23e-01 9.45e-03 1.52e-02
LSqk 9.75e+05 9.76e+05 8.85e+04 -2.52e+04 8.47e+09
LSqα 9.64e-01 9.53e-01 1.27e-01 -3.62e-02 1.75e-02
momk 1.00e+06 9.98e+05 1.02e+04 1.34e+03 1.06e+08
momα 1.20e+00 1.19e+00 9.97e-02 1.95e-01 4.81e-02
MLk 1.01e+06 1.01e+06 1.01e+04 1.02e+04 2.07e+08
MLα 1.02e+00 1.01e+00 1.03e-01 1.96e-02 1.09e-02
medα 1.02e+00 1.01e+00 1.48e-01 -1.00e+06 1.00e+12

Simulation Statistics for Pareto(1mil, 10)

(1mil, 10) Mean Median SE Bias MSE
GDqk 1.00e+06 1.00e+06 4670.00 2.23e+02 2.18e+07
GDqα 1.00e+01 9.93e+00 1.18 1.79e-02 1.40e+00
LSqk 9.97e+05 9.97e+05 9090.00 -3.31e+03 9.35e+07
LSqα 9.62e+00 9.48e+00 1.32 -3.82e-01 1.89e+00
momk 1.00e+06 1.00e+06 1040.00 -1.29e+01 1.08e+06
momα 1.01e+01 1.01e+01 1.01 1.21e-01 1.04e+00
MLk 1.00e+06 1.00e+06 942.00 9.82e+02 1.85e+06
MLα 1.02e+01 1.01e+01 1.06 1.85e-01 1.15e+00
medα 1.03e+01 1.01e+01 1.52 2.80e-01 2.40e+00
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Simulation Statistics for Pareto(1mil, 100)

(1mil, 100) Mean Median SE Bias MSE
GDqk 1.00e+06 1.00e+06 478.0 -12.400 228000
GDqα 1.01e+02 1.00e+02 12.4 0.512 153
LSqk 1.00e+06 1.00e+06 910.0 -281.000 906000
LSqα 9.65e+01 9.57e+01 13.7 -3.470 200
momk 1.00e+06 1.00e+06 99.3 -0.100 9870
momα 1.01e+02 1.00e+02 10.3 1.020 107
MLk 1.00e+06 1.00e+06 104.0 104.000 21600
MLα 1.03e+02 1.02e+02 10.9 2.510 124
medα 1.03e+02 1.01e+02 15.4 2.680 245

Simulation Statistics for Pareto(1mil, 1000)

(1mil, 1000) Mean Median SE Bias MSE
GDqk 1000000 1000000 47.90 -0.30 2290.0
GDqα 1010 997 122.00 6.03 15000.0
LSqk 1000000 1000000 97.50 -28.50 10300.0
LSqα 974 962 125.00 -26.50 16400.0
momk 1000000 1000000 9.60 -0.20 92.1
momα 1010 1000 103.00 11.00 10800.0
MLk 1000000 1000000 9.42 10.00 189.0
MLα 1020 1020 105.00 21.80 11500.0
medα 1030 1010 146.00 25.00 22100.0
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