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Abstract. This paper provides a location estimator from an equation for

continuous data using any nonparametric correlation coefficient. Specific re-
sults will be given for GDCC, the Greatest Deviation Correlation Coefficient

(Gideon and Hollister, 1987); the robustness of the estimator is studied. The

location estimator based on Kendall’s correlation coefficient is closely related
to the signed rank test estimator for location which uses the Walsh averages.

This paper completes the development of basic statistics for location, scale,

and regression areas based on CCs which is independent of classical statistics.

1. Introduction

Let {xi}, i = 1, 2, . . . , n be a random sample from an absolutely continuous
random variable with distribution function F which has a point of symmetry. Let
x represent the data in vector notation, and let x0 represent the vector of order
statistics, x0 = (x(1), x(2), . . . , x(n))′. For any correlation coefficient r, let r(x, y)
be its value on the bivariate data (x, y) which is an n × 2 matrix. Define e′ =
(1, 2, . . . , n), 1′ = (1, 1, . . . , 1) and let the following equation be examined for the
location estimator θ:

r(e, |x0 − θ1|) = 0. (1)

The absolute value notation denotes the vector of absolute values. It is claimed
that the quantity θ is an estimator whose properties depend on the chosen cor-
relation coefficient. Before specializing to the Greatest Deviation Correlation Co-
efficient (see Section 6 for an example of the computation of GDCC and Section
2 for its definition), it can be shown that equation (1) results in an estimator θ
that satisfies some essential properties of a location estimator. Even though this
paper mainly examines only NPCCs, any CC could be studied; some comparisons
are done with Pearson’s CC. This work is part of a system of estimation based on
correlation coefficients called CES or Correlation Estimation System.

2. Scale changes, location shifts, and symmetry

The estimator θ must behave properly with respect to scale and location changes
on the data. First, let the data x be shifted by an amount h : y = x+ h1 so that
y0 = x0 + h1. If θ satisfies equation (1) and if equation (1) is a location equation
then θ + h must satisfy equation (1) when the shifted data y are used. For any
nonparametric correlation coefficient, which only depends on ranks,

r(e, |y0 − θ∗1|) = r(e, |x0 + h1− θ∗1|) = r(e, |x0 − θ1|) = 0,where θ∗ = θ + h.
1
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Thus estimator θ is shifted by the correct amount. Now let y0 = hx0, where h > 0
is the scale change, and if θ∗ is the location estimate for y0, it must be shown that
θ∗ = hθ. Now r(e, |y0−θ∗1|) = r(e, |hx0−θ∗1|) and this is obviously zero if θ∗ = θh
since, r(e, h|x0 − θ1|) = 0 by the scale invariance property of the CC.

If µ is a point of symmetry of a data set, then any location estimator should
give this point as the estimate; thus, for x a data set symmetric about µ, it must
be shown that r(e, |x0 − µ1|) = 0. Consider the case n = 2k + 1, where the point
of symmetry is µ = x(k+1), the middle order statistic. Then

|x(1) − µ| = x(n) − µ
|x(2) − µ| = x(n−1) − µ

...

|x(k) − µ| = x(k+2) − µ
x(k+1) − µ = 0

For yi = x(i) − µ, i = 1, 2, . . . , n, we have

−y1 = yn

−y2 = yn−1

...

−yk = yk+2

yk+1 = 0

and if y is the vector |x0−µ1|, then y′ = (−y1,−y2, . . . ,−yk, 0, yk+2, . . . , yn) where
all components are positive. Let rev(y) be the vector where components of y′

are reversed, so rev(y) = (yn, yn−1, . . . , yk+2, 0,−yk, . . . ,−y1) = y, and rev(e) =
(n, n−1, . . . , 2, 1). Clearly r(e, y) = r(rev(e), rev(y)) but since y = rev(y), r(e, y) =
r(rev(e), y).

Now for any nonparametric correlation coefficient r(rev(e), y) = −r(e, y); this
is easy to show for any rank based CC. Thus, r(e, y) = r(rev(e), y) = −r(e, y),
but this is impossible unless r(e, y) = 0. This proof assumes that a symmetric
rank adjustment method is used with ties such as the mid-rank procedure or the
maximum-minimum method proposed in Gideon and Hollister (1987).

For reference, the definition of GDCC or rgd is given here:

rgd(x, y) = (max
1≤i≤n

(d−i )− max
1≤i≤n

(d+i ))/ [n/2] ,

where d+i =
∑i
j=1 I(uj > i), d−i =

∑i
j=1 I(n+1−uj > i), I is the indicator function,

and the brackets denote the greatest integer function. The vector u consists of the
ranks of y once x has been sorted.
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3. Kendall’s τ : location estimator and its relationship to the
Signed Rank statistic

In this section the location estimator will be developed from equation (1) us-
ing Kendall’s τ . The development closely parallels the location estimator of the
Wilcoxon signed rank test using Walsh averages as explained in the textbook by
Hettmansperger (1984), section 2.3.

Let Wij = (xi + xj)/2 for i < j over the n(n− 1)/2 distinct pairs, and let V =
{xi|i = 1, 2, . . . , n}. Then the Walsh averages are the set of numbers

⋃
i<jWij

⋃
V ,

and the signed rank location estimator is the median of this set. It will be shown
that the location estimator using Kendall’s τ in equation (1) is the median of the set
{Wij |i < j} and they are asymptotically equivalent. Intuitively, since the number
of elements in Wij is growing as n2 while the number of elements in the set V is
only growing as n, for large n, the estimation based on these two statistics will
become very close, and the asymptotic distribution the same.

Theorem 1. The solution to τ(e, |x0−θ1|) = 0 is given by the median of the set

of numbers Wij = (xi + xj)/2 for i < j; that is, θ̂ = med(Wij) is the CES location
estimator with Kendall’s τ .

Proof: If a location null hypothesis is H0 : µ = µ0, then the value of the signed
rank statistic has (n(n−1)/2+n)+1 = n(n+1)/2+1 distinct values depending on
where µ0 lies. The Walsh averages partition the axis into n(n+1)/2+1 disjoint sets
upon which the signed rank statistic takes its values. If µ0 were moved continuously
from less than x(1) to beyond x(n), the value of the signed rank statistic would
change at each Walsh average in a monotonic fashion from one extreme to the other.
In the same manner the value of τ(e, |x0−θ1|) goes from +1 when θ < (x(1)+x(2))/2
to −1 when θ > (x(n) + x(n−1))/2 and its value changes in a monotonic fashion at

each point in the set
⋃
i<jWij . The essential difference is that the ranks of |x0−θ1|

do not change at points in the set V whereas the signs of the ranks do change at
these points. The details of the monotonic change are now shown. As θ approaches
the average (x(i) + x(j))/2, i < j from the left, |x(i) − θ| < |x(j) − θ|, and once this

average is crossed, |x(i) − θ| > |x(j) − θ|. Thus, in τ(e, |x0 − θ1|), a transposition

in the ranks of |x0 − θ1| occurs at the point Wij . Let nc and nd be the number of
concordances and discordances in the calculation of τ . Every transposition must
change nc − nd by at least two because if a concordance is lost, a discordance is
gained. Now τ = (nc−nd)/

(
n
2

)
and nc−nd equals n(n−1)/2 for θ < (x(1) +x(2))/2

and −n(n− 1)/2 for θ > (x(n) + x(n−1))/2.
A transposition occurs n(n − 1)/2 times since there are that many points in⋃
i<jWij . Then nc − nd changes by at least twice n(n − 1)/2, i.e. by n(n − 1).

Since n(n−1)/2−n(n−1) = −n(n−1)/2, it must be true that nc−nd changes its
value by exactly two at each transposition. Since nc − nd is a nonincreasing step
function at the points in the set

⋃
i<jWij , it follows that for Kendall’s τ , equation

(1) will be satisfied at θ̂ = med(Wij), since at this point nc − nd = 0. •
Kendall’s τ location estimate and the signed rank statistic will now be shown

to have the same asymptotic distributions except for a location and scale change.
By a similar type of argument that appears later for rgd or the Wilcoxon signed
rank statistic (see exercise 2.10.2 in Hettmansperger, 1984), the distribution of
τ(e, |X0 − µ1|) is symmetric about µ.
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To develop the asymptotic theory for the estimate of location from the signed
rank statistics, the asymptotic distribution of T, the number of positive Walsh aver-
ages is first found. The following notation follows similarly to that of Hettmansperger
(1984) on pages 48, 54, 76, and 202. For these Walsh averages, define

Tij =

{
1, if Wij > 0, i < j;

0, otherwise.

Ti =

{
1, if x(i) > 0, i = 1, 2, . . . , n ;

0, otherwise.

Then T =
∑
i<j Tij +

∑n
k=1 Tk, and(

n
2

)
τ(e, |x0|) =

∑
i<j sgn(j − i)sgn(|x(j)| − |x(i)|) =

∑
i<j sgn(|x(j)| − |x(i)|).

Since x(i) < x(j) for i < j, |x(j)| − |x(i)| < 0 implies Wij < 0, and |x(j)| −
|x(i) > 0 implies Wij > 0. Thus

(
n
2

)
τ(e, |x0|) =

∑
i<j Tij −

∑
i<j T

∗
ij , where

T ∗ij =

{
1, if Wij < 0;

0, otherwise.

Since
∑
i<j Tij = nc, the number of concordances,

∑
i<j T

∗
ij = nd, the number of

discordances, and nc+nd =
(
n
2

)
. In the no tie case,

(
n
2

)
τ(e, |x0|) = 2

∑
i<j Tij−

(
n
2

)
.

Finally, τ(e, |x0|) = −1 + (2
∑
i<j Tij)/

(
n
2

)
.

Now, to abbreviate notation, use τ in place of τ(e, |X0|) and TK =
∑
i<j Tij ; K

denotes Kendall. The relationship between τ and TK is developed by modifying
work in Hettmansperger (1984). Assuming that the null hypothesis is true and
using the semicircle discussion in Hettmansperger, it is easily shown that TK =∑n
j=1(j − 1)Wj , so E(TK) =

∑n
j=1(j − 1)E(Wj) = n(n−1)

4 . In the proceeding, as

in Hettmansperger, Wj is 1 if |x|(j) corresponds to a positive observation and 0

otherwise. Then T =
∑n
j=1 jWj and the Wi are independent with P (Wi = 0) =

P (Wi = 1) = 1/2, for all values of i.

Now V (TK) =
∑n
j=1(j−1)2V (Wj) = 1

4

∑n−1
k=1 k

2 = n(n−1)(2n−1)
24 , since E(Wj) =

1/2 and V (Wj) = 1/4. Hence, E(
(
n
2

)
τ+1
2 ) = E(TK) = n(n−1)

2
1
2 =

(
n
2

)
1
2 . From

this E( τ+1
2 ) = 1/2 or E(τ) = 0. Because V (

(
n
2

)
τ+1
2 ) = V (TK) = n(n−1)(2n−1)

24 =
2n−1
12

(
n
2

)
, V (τ) = 2(2n−1)

3n(n−1) .

Finally, the asymptotic null distribution of TK is N(n(n−1)4 , n(n−1)(2n−1)24 ) and of

τ is N(0, 2(2n−1)
3n(n−1) ).

Thus the asymptotics of T , TK and τ , for Hodges-Lehmann location estimate,
are very similar. The main thrust of this section is to show that (1) is a reasonable
criteria for a location estimate as it connects to the signed rank test when the
correlation coefficient is τ . In the next section, correlation coefficient rgd is used in
(1).

4. The Greatest Deviation Correlation Coefficient (GDCC), rgd

Theorem 2. Let x0 = (x(1), x(2), . . . x(n))
′ be the order statistics from a random

sample and let θ̂ be the solution to the equation rgd(e, |x0−θ1|) = 0 where again 1′ =
(1, 1, . . . 1). Because of discreetness, the solution can be an interval; its midpoint
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is taken to define a unique solution. Then 4θ̂ = x(
[n+1

3 ]
) + x(

[n+3
3 ]
) + x(

[ 2n+2
3 ]
) +

x(
[ 2n+4

3 ]
), where [ ] is the greatest integer notation, and θ̂ gives the rgd location

estimator for n > 1.
Proof: There are three cases which are proved separately but similarly,

(1) n = 3k, so that 4θ̂ = x(k) + x(k+1) + x(2k) + x(2k+1)

(2) n = 3k + 1, so that 4θ̂ = x(k) + x(k+1) + x(2k+1) + x(2k+2)

(3) n = 3k + 2, so that 4θ̂ = 2x(k+1) + 2x(2k+2).

rgd is a rank correlation coefficient and as a function of θ in the defining equation,
is a decreasing step function. For θ < (x(1) + x(2))/2, the ranks of the elements of

|x0 − θ1| are in numerical order and hence, rgd(e, |x0 − θ1|) = +1. Only when θ
passes over the average of a pair of the order statistics, can the value of rgd decrease.

For θ > (x(n−1)+x(n))/2, the elements of |x0−θ1| are in exact reverse numerical

order and hence, rgd(e, |x0 − θ1|) = −1. Unlike Kendall’s τ , rgd does not always
change its value at these averages.

The solution set of equation (1) is defined by left and right end points which are
given by the average of a pair of the order statistics. The value of θ is taken to be
the average of the left and right end points of the solution set. For each case, the
left and right end points are now listed.

Left Right
(1) (x(k) + x(2k))/2 (x(k+1) + x(2k+1))/2
(2) (x(k) + x(2k+1))/2 (x(k+1) + x(2k+2))/2
(3) (x(k+1) + x(2k+2))/2 (x(k+1) + x(2k+2))/2

In general, for tied values in any data set, rgd is defined to be (r+gd + r−gd)/2

where r+gd is the maximum value and r−gd the minimum value under all possible
permutations of ranks within the tied value sets. Thus, for this last case, rgd jumps
over zero at this point, and by the definition of rgd at a jump point, as the average
of the two values, rgd is exactly zero at this one point.

For case (1), let xl = (x(k) + x(2k))/2. It is to be shown that for θ = xl,

lim
θ→x−

l

rgd(e, |x0 − θ1|) = r+gd(e, |x
0 − θ1|) ≡ r+gd = 1/[n/2]

and that

lim
θ→x+

l

rgd(e, |x0 − θ1|) = r−gd(e, |x
0 − θ1|) ≡ r−gd = 0

From this we have rgd = (r+gd + r−gd)/2 = 1/(2[n/2]), and hence xl is the left end

point of the solution set. In Table 1, let e and |x0 − θ1| be listed in a column with
the elements of e denoted by i and those of |x0 − θ1| by ri, the rank of the ith one.
Note that ri is a function of θ. For θ = xl, the inequalities of Table 1 hold for the
ri. The standard layout (Gideon and Hollister, 1987) for the calculation of rgd is
found in Table 1 and the inequalities on the ranks ri are explained as follows.

Inequalities on the ranks are sufficient to calculate rgd. These inequalities come
from examining the ranks of |x0 − θ1| where θ is chosen to be xl. All the ranks of
rk+1 to r2k−1 are less than or equal to k − 1 because all the x(i) in this range are
closer to xl than any x(i) for which i < k+1 or i > 2k−1. The values of |x(k)−xl1|
and |x(2k) − xl1| are the same so that rk = r2k. The inequality 2k ≤ r1 ≤ n is true
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because the rank of |x(1)−xl| is greater than the rank of |x(i)−xl|, i = 2, 3, . . . , 2k.
Likewise, 2k− 1 ≤ r2 ≤ n is true because the rank of |x(2) − xl| is greater than the
rank of |x(i) − xl|, i = 3, 4, . . . , 2k. In a similar fashion the inequalities proceed to
k + 2 ≤ rk−1 ≤ n. By a similar examination the ranks ri for 2k + 1 ≤ i ≤ n are
as given in the table; however there are k terms not k − 1. Now rk < rk−1 and
r2k < r2k−1 and rk = r2k so both rk and r2k are less than or equal to k+ 1. But rk
and r2k are also greater than k−1, so that rk and r2k are k or k+1 if differentiated,
but actually tied at (2k + 1)/2.

Table 1: Inequalities for xl

rank(e) rank(|x0 − θ1|)
i ri
1 r1 2k ≤ r1 ≤ n
2 r2 2k − 1 ≤ r2 ≤ n
...

...
...

k − 1 rk−1 k + 2 ≤ rk−1 ≤ n
k rk rk = k or k + 1

k + 1 rk+1 0 ≤ rk+1 ≤ k − 1
k + 2 rk+2 0 ≤ rk+2 ≤ k − 1

...
...

...
2k − 1 r2k−1 0 ≤ r2k−1 ≤ k − 1

2k r2k r2k = k or k + 1
2k + 1 r2k+1 k + 2 ≤ r2k+1 ≤ n
2k + 2 r2k+2 k + 3 ≤ r2k+2 ≤ n

...
...

...
n rn 2k ≤ rn ≤ n

In Table 2 r+gd and r−gd are computed. The column headed by (1) is
∑i
k=1 I(i <

rk), and column (2) is
∑i
k=1 I(i < n + 1 − rk), where I is the indicator function

which is one if the inequality is true or else zero. Pay particular attention to the
difference in ranks in the calculation of r+gd and r−gd at i = k and i = 2k.
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Table 2: Calculation of GDCC for Location Estimate, n = 3k

i r+gd : ri (1) n + 1 − ri (2) r−gd : ri (1) n + 1 − ri (2)

1 ≥ 2k 1 ≤ k + 1 ≤ 1 ≥ 2k 1 ≤ k + 1 ≤ 1

2 ≥ 2k − 1 2 ≤ k + 2 ≤ 2 ≥ 2k − 1 2 ≤ k + 2 ≤ 2
...

...
...

...
...

...
...

...
...

k − 1 ≥ k + 2 k − 1 ≤ 2k − 1 ≤ k − 1 ≥ k + 2 k − 1 ≤ 2k − 1 ≤ k − 1
k k k − 1 = 2k + 1 ≤ k k + 1 k 2k ≤ k

k + 1 ≤ k − 1 ≤ k − 1 ≥ 2k + 2 ≤ k ≤ k − 1 ≤ k − 1 ≥ 2k + 2 ≤ k

k + 2 ≤ k − 1 ≤ k − 1 ≥ 2k + 2 ≤ k ≤ k − 1 ≤ k − 1 ≥ 2k + 2 ≤ k
...

...
...

...
...

...
...

...
...

2k − 1 ≤ k − 1 ≤ k − 1 ≥ 2k + 2 = k ≤ k − 1 ≤ k − 1 ≥ 2k + 2 ≤ k

2k k + 1 ≤ k − 1 = 2k ≤ k k ≤ k − 1 2k + 1 = k

2k + 1 ≥ k + 2 ≤ k − 1 ≤ 2k − 1 ≤ k − 1 ≥ k + 2 ≤ k − 1 ≤ 2k − 1 ≤ k − 1
2k + 2 ≥ k + 3 ≤ k − 2 ≤ 2k − 2 ≤ k − 2 ≥ k + 3 ≤ k − 2 ≤ 2k − 2 ≤ k − 2

...
...

...
...

...
...

...
...

...

n ≥ 2k ≤ 0 ≤ k + 1 ≤ 0 ≥ 2k ≤ 0 ≤ k + 1 ≤ 0

max max max max

= k − 1 = k = k = k

In the computation of rgd, there are only k terms for i from 2k + 1 to n = 3k
and the computation in columns (1) and (2) must decrease to zero which forces the
entries on these columns to be decreasing as stated. Thus r+gd = (k−(k−1))/ [n/2] =

1/ [n/2] and r−gd = (k − k)/ [n/2] = 0; so rgd = (r+gd + r−gd)/2 = 1/(2[n/2]).

In a similar fashion if xr = (x(k+1) +x(2k+1))/2, the right end point, and θ = xr
in rgd(e, |x0 − θ1|), then r+gd = (k − k)/ [n/2] = 0 and r−gd = ((k − 1)− k)/ [n/2] =

−1/ [n/2]. Thus, xr is the right end point of the solution set and at this point rgd
is (r+gd + r−gd)/2 = −1/(2 [n/2]). The formula for case (1) comes from the average
of xr and xl.

The details of cases (2) and (3) are done in a similar fashion and only the
results are given. For case (2), at θ = (x(k) + x(2k+1))/2, rgd = (r+gd + r−gd)/2 =

(((k+1)−k)+(k−k))/(2 [n/2]) = 1/(2 [n/2]) at the left end of the solution set. At
θ = (x(k+1) +x(2k+2))/2, rgd = (r+gd + r−gd)/2 = ((k− k) + (k− (k+ 1)))/(2 [n/2]) =

−1/(2 [n/2]) at the right end of the solution set. Again the average of xr and xl
gives the case (2) result.

For case (3), if θ = (x(k+1)+x(2k+2))/2, and limc→θ− rgd(e, |x0−c1|) = r+gd(e, |x0−
θ1|) = 1/ [n/2] and limc→θ+ rgd(e, |x0 − c1|) = r−gd(e, |x0 − θ1|) = −1/[n/2], so that

r+gd = 1/ [n/2] and r−gd = −1/ [n/2] which gives rgd = 0 and, as stated, there is a
unique point for the solution set. •

Theorem 3. If µ is the point of symmetry of F , the sampling distribution of
rgd(e, |X0 − µ1|) is distribution free and symmetric.

Proof: Let A be a class of distribution functions that are symmetric and abso-
lutely continuous. Let µF represent the point of symmetry of distribution function
F ∈ A, and let, as before, x0 be the order statistics of a random sample of F .
Then rgd(e, |X0 − µF 1|), is distribution-free within the class A. The proof of this
depends on the transformation X → F (X) ≡ U where X is the notation for a
random variable. First, F (µF ) = 1/2, X − µF is symmetric about zero and F (X)
is a U(0, 1) random variable. Clearly, rank(x(i) − µF ) = rank(F (x(i)) − 1/2).
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Thus, the set of ranks of |x0 − µF 1| remain unchanged under the transformation
to the ranks of |u0 − (1/2)1| where u0 = (F (x(1)), F (x(2)), . . . , F (x(n)))

′. Now, let
Fu(x) = x over the interval (0, 1) be the distribution function of a U(0, 1) ran-
dom variable. Fu is in the class A. The random variable rgd assumes only values
i/ [n/2] , i = − [n/2] , . . . , [n/2].

Let Ei = {x| rgd(e, |x0−µF 1|) = i/ [n/2]}. It will be shown that P (rgd(e, |X0−
µF 1|) = i/ [n/2] = P (Ei|F ∈ A) = P (Ui|Fu) where Ui is contained in the n-fold
region (0, 1) × (0, 1) × . . . (0, 1) where a random sample of the random variable
F (X) = U(0, 1) assumes the value i/ [n/2] for rgd(e, |U0 − (1/2)1|).

Since {x| rgd(e, |x0 − µF 1|) = i/ [n/2]} = {u| rgd(e, |u0 − (1/2)1|) = i/ [n/2]},
because of the equivalence of the ranks of the arguments, P (Ei|F ) = P (Ui|Fu).
Thus the distribution of rgd(e, |X0 − µF 1|) is unchanged for all F ∈ A and hence
nonparametric distribution-free.

For the symmetry part, we use the equal in distribution technique that is sum-
marized in Randles and Wolfe (1979). The distribution of rgd(e, |X0 − µF 1|) is

symmetric about zero. It is true that x − µF 1
d
= µF 1 − x ⇒ (x − µF 1)0 =

x0 − µF 1
d
= (µF 1 − x)0 = µF 1 − x0 = −rev(x0 − µF 1). Therefore, ranks(|x0 −

µF 1|) d
= ranks(| − rev(x0 − µF 1)|) = ranks(|rev(x0) − µF 1|). Let the vector

M ′ = (m1,m2, . . . ,mn) = ranks(|x0−µF 1|) so that rgd(e, |x0−µF 1|) = rgd(e,M)
and rgd(e, rev(M)) = −rgd(e,M) by result (d) on page 658 in Gideon and Hollister
(1987). In order to show the symmetry, Theorem 1.3.16 in Randles and Wolfe (1979)
is utilized with g(x0 − µF 1) = −rev(x0 − µF 1), u((x− µF 1)0) = rgd(e, |x0 − µF 1|)
and ranks(|rev(x0)−µF 1|) = rev(M). Thus, the conditions of Theorem 1.3.16 are
satisfied and the distribution of rgd(e, |X0 − µF 1|) is symmetric about zero.•

5. Asymptotics and Relative Efficiencies

In this section the asymptotic relative efficiency of the rgd location estimator
relative to the mean, median, and a weighted quartile estimate are compared for
four sampling distributions, first developing the large sample estimate for rgd. The

following notations are used: converges with probability one is
wp1−−→ and converges

in distribution is
d−→.

Theorem 4. The limiting distribution of θ̂ as n → ∞, is θ̂
wp1−→ 1

2 (ξ̂1/3 + ξ̂2/3)

where ξ̂p is the pth quantile of the sample.
Proof: In the following, kn represents the sequence of integer subscripts on the

order statistics. Serfling (1980) gave conditions on kn/n that are sufficient for the
following asymptotic results. These conditions are shown for the case kn =

[
n+3
3

]
.

Substituting n = 3k, 3k + 1, and 3k + 2, in

4θ̂ = x([n+1
3 ]) + x([n+3

3 ]) + x([ 2(n+1)
3 ]) + x([ 2(n+2)

3 ])

from Theorem 2 yields

1. n = 3k, [(3k+3)/3]
n = [k+1]

3k = k+1
3k = 1

3 + 1
n ,

2. n = 3k + 1, [(3k+1+3)/3]
n = k+1

3k+1 = 1
3 + 2

3n ,

3. n = 3k + 2, [(3k+2+3)/3]
n = k+1

3k+2 = 1
3 + 1

3n .
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The case kn =
[
n+1
3

]
leads to kn/n = 1/3 + o(1/

√
n). The cases kn =

[
2(n+1)

3

]
and

[
2(n+2)

3

]
lead to kn/n = 2/3 + o(1/

√
n). Thus, the results in Serfling (1980)

can be used with p = 1/3 or p = 2/3.

The asymptotic variances in the cases n = 3k and n = 3k + 1 lead to θ̂ =

0.25(2ξ̂1/3 + 2ξ̂2/3) which is the same as the case n = 3k + 2 where directly θ̂ =

0.5(ξ̂1/3 + ξ̂2/3). So the asymptotic variance of the estimate is developed.

The estimator θ̂ can be compared to other estimators in the sense of asymp-
totic relative efficiency using the criterion of the asymptotic variance in the normal

approximation. It will be compared to the mean (x̄), median (ξ̂1/2), and quartile

T̂ = (ξ̂1/4+2ξ̂1/2+ξ̂3/4)/4 for the symmetric distributions normal, uniform, Cauchy,
and double exponential.

In the results to follow, the fact that θ̂ is asymptotically the same as 0.5(ξ̂1/3 +

ξ̂2/3) is key.

The asymptotic normal distribution of θ̂ is given by Theorem B on page 80 of

Serfling (1980). (ξ̂1/3, ξ̂2/3) is asymptotically N

((
ξ1/3
ξ2/3

)
,Σ

)
where

Σ = 1
9n

(
2

f2(ξ1/3)
1

f(ξ1/3)f(ξ2/3)
1

f(ξ1/3)f(ξ2/3)
2

f2(ξ2/3)

)
and ξm = F−1(m),m = 1/3 or 2/3.

From this result, the asymptotic distribution of θ̂ is

N

(
ξ1/3 + ξ2/3

2
,

1

18n

(
1

f2(ξ1/3)
+

1

f(ξ1/3)f(ξ2/3)
+

1

f2(ξ2/3)

))
.•

The specific results for the four distributions are given now for θ̂ and the relative
efficiencies comparing other estimations follow.

(a) N(µ, σ2) : θ̂ ∼ N(µ, 1.2607σ2/n).

(b) U(α, β) : θ̂ ∼ N((α+ β)/2, (β − α)2/(6n)).

(c) Cauchy: f(x) = 1
π(1+x2) ,−∞ < x < +∞, θ̂ ∼ N(0, 2.9243/n).

(d) double exponential:f(x) = exp(−|x|/2),−∞ < x < +∞, θ̂ ∼ N(0, 1.5000/n).

From the same theorem B of Serfling, the analogous results for the other three
estimators can be derived, but listed here will be the asymptotic relative efficien-
cies, are(−,−), where − will be one of the four estimates of centrality.

Table 3: Asymptotic Relative Efficiencies

distribution are(θ̂, x̄) are(θ̂, ξ̂1/2) are(θ̂, T ) are(ξ̂1/2, x̄) are(T, x̄)
N(0, 1) 0.7932 1.2460 0.9476 0.6366 0.8370
U(α, β) 0.5000 1.5000 0.9375 0.3333 0.5333
Cauchy ∞ 0.8437 1.0546 ∞ ∞

exp(−|x|/2) 1.3333 0.6667 0.8333 1.9999 1.5999

For example, are(θ̂, ξ̂1/2), the ratio of asymptotic variances of ξ̂1/2 to θ̂ for the

normal is 1.2460, showing that θ̂ is better than the median. It can be seen from



10 JOHN BRUDER, LI-CHIOU LEE, MIKE THIEL, RUDY A. GIDEON

this listing that no one estimator is best. For the Cauchy entries, θ̂ is better than
T and infinitely better than x̄.

In summary, it has been shown how to use a correlation coefficient to produce a
location estimator. Specific results were developed for Kendall’s τ and GDCC for
which the estimator depends essentially on the 1/3 and 2/3 quantiles, and hence,
in terms of robustness, the “breakdown point” would be 1/3.

6. Estimation of Location after Scale

Using the results of previous work (Gideon and Rothan, 2010), the CES estimate
of σ is used in (1) to estimate µ. This is done by estimating σ directly by the
CES method with the original data and then the estimate of µ is the solution to
equation (1) with the residuals, x0 − σ̂q, in place of x0. The quantity q is the
vector of appropriate theoretical quantiles and is elaborated below. This extended
procedure has been tested with GDCC using computer simulations and seems to
give an unbiased estimate of µ with a smaller variance than the direct method
discussed in Section 4. Pearson’s CC is also used to solve the location equation (1)
and, in addition, to estimate µ after the CES estimate of σ. This is done to connect
CES to classical estimates via Pearson’s CC which uses least squares methods.

In Section 8 the CES location methods are used with censored data. It is espe-
cially easy to use in the type II censored data setting as defined in Gupta’s paper
(1952). Under normality assumptions this new method gives similar results to the
examples given in Gupta, but for the exponential model the CES method gives a
somewhat different result. The main results are based on computer simulations
except for samples of sizes 2 and 3 and the unbiasedness proof.

In the censored data setting with any set of size h of known order statistics, σ
and µ can be estimated in almost the same manner as for the full data set. Let xh
represent the vector of h known order statistics and kh the corresponding vector
of expectations of the standardized order statistics. Then the same procedure as
for the full sample is done but with xh and kh. The estimate will remain unbiased
and some examples are given later. The motivation will be done for a symmetric
random variable although it is applicable to asymmetic distributions also.

This paragraph explains the CES two step estimate of µ by calculating the result
for a perfect random sample (no error) or, in other words, what happens in the limit.
Let qi = Φ−1(i/(n + 1)), i = 1, 2, . . . , n where Φ is the cumulative distribution
function of Z, a N(0, 1) random variable. Asymptotically qi approaches E(Z(i)),

the expectation of the ith order statistic of Z. So if F is the cdf of a N(µ, σ) random
variable, then F (x) = Φ(x−µσ ). Since x(i) = µ+ σz(i), x(i) = µ+ σqi + εi and this
relationship is used to estimate first σ and then µ. The CES scale equation for the
normal distribution is r(q, x0 − sq) = 0, where q is the ordered vector of qi and s
is the estimate of σ. If εi = 0 for all i, then x(i) = µ + σqi and the scale equation
becomes r(q, µ1+σq−sq) = 0. For s = σ, the equation is r(q, µ1) = 0, (by the min-
max tied value procedure) so σ is the solution. Then the location equation (1) is
r(e, |x0−θ1|) = 0 and so r(e, |µ1+σq−θ1|) = 0. Now it is shown that if θ = µ, this
equation is satisfied. Continuing, r(e, |σq|) = r(e, σ|q|) = r(e, |q|). Geometrically,
the graph of e and |q| looks like a perfectly symmetric U-shape centered at zero on
the horizontal axis.

Two cases are taken, n = 10 and n = 11, to show the pattern that gives the zero
solution using GDCC and the CES tied value procedure. For n = 10 the ranks of
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|q| are 9.5, 7.5, 5.5, 3.5, 1.5, 1.5, 3.5, 5.5, 7.5, 9.5. The ranks of |q1| and |q10| are
tied at 9 and 10, the ranks of |q2| and |q9| are tied at 7 and 8, and so forth until the
ranks of |q5| and |q6| are tied at 1 and 2. See Tables 4 and 5, where the min-max
procedure converts the ranks of |q| into unique vectors.

To compute rgd for r(e, |q|), one must compute r+gd and r−gd, by using the per-

mutations of |q| which give the most positive and most negative correlations. To
this end a table is constructed. The correlation data are in columns 1 and 2, most
positive, and columns 6 and 7, most negative. Column 4 is (n + 1 − col2) and
column 9 is (n+ 1− col7). As an example, the 6th row elements of columns 3, 5, 8,
10 are 2, 3, 2, 3 because: column 2 has two numbers greater than 6 that are at or
above row 6; column 4 has three numbers greater than 6 that are at or above row
6; column 7 has two numbers greater than 6 that are at or above row 6; column 9
has three numbers greater than 6 that are at or above row 6. The other rows follow
in the same counting manner. The denominator is the greatest integer in n/2, or
[10/2] = [11/2] = 5.

Table 4: Tied Value Procedure for GDCC, n = 10

r+gd r−gd
cols 1 2 3 4 5 6 7 8 9 10

1 9 1 2 1 1 10 1 1 0
2 7 2 4 1 2 8 2 3 1
3 5 3 6 2 3 6 3 5 1
4 3 3 8 2 4 4 3 7 2
5 1 2 10 3 5 2 3 9 2
6 2 2 9 3 6 1 2 10 3
7 4 1 7 3 7 3 2 8 3
8 6 1 5 2 8 5 1 6 2
9 8 0 3 1 9 7 1 4 1
10 10 0 1 0 10 9 0 2 0

max 3 3 3 3

Consequently, r+gd = (3−3)/5 = 0 and r−gd = (3−3)/5 = 0 so rgd = (r+gd+r−gd)/2 = 0.

The pattern is clear so that for all even n, rgd(e, |q|) = 0
Take n = 11 for an odd sample size example. The ranks of |q| are tied in pairs

with a middle observation at zero having rank 1. The calculation of r+gd and r−gd in
Table 5 should be clear from the n = 10 case.
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Table 5: Tied Value Procedure for GDCC, n = 11

r+gd r−gd
cols 1 2 3 4 5 6 7 8 9 10

1 10 1 2 1 1 11 1 1 0
2 8 2 4 1 2 9 2 3 1
3 6 3 6 2 3 7 3 5 1
4 4 3 8 2 4 5 4 7 2
5 2 3 10 3 5 3 3 9 2
6 1 2 11 3 6 1 3 11 3
7 3 2 9 4 7 2 2 10 3
8 5 1 7 3 8 4 2 8 3
9 7 1 5 2 9 6 1 6 2
10 9 1 3 1 10 8 1 4 1
11 11 0 1 0 11 10 0 2 0

max 3 4 4 3

Consequently, r+gd = (4 − 3)/5 = 1/5 and r−gd = (3 − 4)/5 = −1/5 so rgd =

(r+gd + r−gd)/2 = (1/5 + (−1/5))/2 = 0. The pattern is clear so that for all odd n,

rgd(e, |q|) = 0.
When there is random variation, |εi| > 0 for all i, the scale equation is solved

for s and then the location equation, r(e, |(x− sq)0 − θ1|) = 0, is solved for θ.
In general, the location estimate on the data with non-zero error gives good re-

sults as shown in Table 6. The CES method is a general procedure and any CC can
be used and any F as long as the expectations of the standardized order statistics
or their approximations, as herein, are available.

Table 6: Averages of 500 Random Samples

Estimation Method (no outliers)
Classical Pces Pces2 GDCC GDCC2 true value

µ 5.019 5.019 5.020 5.033 5.027 5
σ/
√
n 0.432 0.445 0.436 0.463 0.431 3/7 = 0.429

σ 2.979 3.088 — 2.988 — 3
Estimation Method (outliers)

µ 4.828 4.749 4.929 4.930 4.910 5
σ/
√
n 0.527 0.633 0.808 0.493 0.471 3/7 = 0.429

σ 3.605 3.464 — 3.283 — 3

As an illustration, a sample size of 49 was used to demonstrate typical results.
The normal distribution was used with mean 5 and standard deviation 3 and some
runs had random outliers (with mean 3, SD 7) introduced for 5 of the 49 observa-
tions. Pearson’s CC was used with the CES method, equation (1), to compare it to
classical results. GDCC was used to demonstrate its robust properties and to show
how close it is to classical methods. Thus, there are two runs on Pearson’s CC —
with and without outliers — and likewise for GDCC. One hundred random samples
were run several times with summary statistics to find differences or trends. Once
trends were identified, in order to increase accuracy, five hundred random samples
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produced the results in Table 6. Five means were computed: the classical mean,
the Pces mean (the solution to equation (1) with Pearson’s CC), Pces2 (Pces after
σ was estimated), the CES mean with GDCC, and the CES mean with GDCC
after σ was estimated (labeled with 2 in Table 6). An alternate way to describe the
means labeled with a 2 is the CES mean of (x0 − σ̂q) where σ̂ is the CES estimate
of σ. Note that if the classical mean of (x0 − σ̂q) is taken, one gets x because q is
symmetric about zero.

The estimate of the standard deviation of x̄, σ/
√
n, from 500 random samples

is 0.432 and the true value is 3/7 ∼= 0.429. From classical distribution theory
the standard deviation of this estimate is 0.0116 which is greater than (0.432 −
0.429) = 0.003. Thus, the simulations are producing the expected results, and so the
GDCC2 estimate, 0.431, is remarkable. This result has been verified with numerous
simulations so the GDCC location estimate based on the 1/3−2/3 quantile average
is as good as the classical x̄ estimate using normal data. In the second half of Table
6 the classical x̄ using five possible outliers has a theoretical standard deviation of
0.517 and the observed sample standard deviation, 0.527, with 500 random samples,
is within a standard deviation. Note however that both the GDCC (0.498) and
GDCC2 (0.471) estimates are much smaller. This, of course, is due to the robustness
of GDCC. Also note that for pure normal data, Pces and classical results are roughly
equivalent. With respect to the mean, Pces2 has some robustness (the average of
the µ estimate is 4.929) but the variation is significantly larger, 0.808.

The two-step procedure for a location estimate can also be used on the median
to improve its variability without biasing it for symmetric distributions. GDCC is
again used to estimate σ and then the median is taken on the residuals, x0−σ̂q. Sev-
eral sets of simulations again were used to determine the results and then a set of 500
simulations gave the values to follow. For the normal data the asymptotic efficiency
of the mean to the median is 2/π, the variance ratio; the standard deviation ratio is√

2/π ∼= 0.7979. For the same setup using N(5, 32) and n=49, for 500 simulations
the standard deviation ratio of the regular median was 0.4129/0.5244 = 0.7833,
fairly close to 0.7979. However, the mean of the medians of the residuals gave an
average of 5.045 and σ̂mean/σ̂median = 0.4129/0.4276 = 0.9656. Thus, the two-step
procedure makes the median almost as efficient as the mean.

Just as in the GDCC location estimate, the two-step process is robust for the
median. For the same sample setup with five outliers as described above, the mean
of the 500 random samples was 4.7723 and the mean of the medians was 4.8680
while the mean of the medians of the residuals was 4.8574. The corresponding
standard deviations were 0.5329, 0.5709, and 0.4970. So the standard deviation
ratios are 0.5329/0.5709 = 0.9334 and 0.5327/0.4970 = 1.0722. This means the
median in terms of variability is superior.

Other papers such as Gideon (2012), have already demonstrated the strength of
CES in regression analysis.

7. Small Sample Results for θ̂

Consider two equations:
(a) rgd(k, x

0 − sk) = 0 and
(b) rgd(e, |(x0 − sk)0 − θ1|) = 0.

To estimate µ after σ, solve equation (a) for s. Denote this estimate of σ by
GDCC(s). Now solve equation (b) for θ using this value of s. Denote this estimate
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of µ by GDCC(θ|s). Finally, denote by GDCC(θ|x) the estimate of µ using the
raw data.

For n = 2 it can be shown that GDCC(s) =
x(2)−x(1)

k2−k1 and that GDCC(θ|x) =

GDCC(θ|s) =
x(2)+x(1)

2 . Because ki = E(Z(i)) and X(i) = µ+ σZ(i), the unbiased-
ness of each estimator for its respective parameter is easy to prove:

E(GDCC(s)) = E
(
X(2)−X(1)

k2−k1

)
= σ and E

(
X(1)+X(2)

2

)
= E(X) = µ.

For n = 3 and symmetric F , it can be shown thatGDCC(s) = 0.5
(
x(3)−x(1)

k3−k1 +
x(2)−x(1)

k2−k1

)
=

x(3)+2x(2)−3x(1)

4k3
, and GDCC(θ|x) =

x(1)+2x(2)+x(3)

4 , because k2 = 0 and k3 = −k1.

For GDCC(θ|s) the residual vector must be examined for its six possible order-
ings in detail and if F is symmetric about µ, which implies symmetry in the ki (e.g.
k1 = −k3), then, after some tedious work and letting s = GDCC(s),

GDCC(θ|s) =
((x(2)−k2s)+2(x(1)−k1s)+(x(3)−k3s))

4 =
x(2)+2x(1)+x(3)

4 − s(k2+2k1+k3)
4 =

x(2)+2x(1)+x(3)

4 + k3s
4 = 1

16 (5x(1) + 6x(2) + 5x(3)).
It is again easy to show that all estimates are unbiased. It can also be shown

that if F is a U(0, 1) distribution function, V ar(GDCC(θ|x)) = 0.0313 which is
more than V ar(GDCC(θ|s)) = 0.0285. Hence, the residual method of estimating
µ after σ has the smaller variance. Although no closed forms have been found for
the cases n > 3, computer simulations in the next section and Table 6 confirm that
the residual method is best. It is conjectured that this would also be the case for
other nonparametric correlation coefficients. After showing the unbiasedness of the
residual method, the next section gives the results of some computer simulations
and several examples.

8. Proof of the Unbiasedness of the Residual (Two-Step) Method

This work uses the equal in distribution technique that is summarized in Randles
and Wolfe (1979), employing Theorem 1.3.2 which states that random variable X

is symmetric about a point µ if and only if X − µ d
= µ − X, and Theorem 1.3.7

which states that if X
d
= Y and U is a measureable function defined on the common

support of X and Y then U(X)
d
= U(Y ). In what follows, these are applied for

random sampling and order statistics.

Let (X1, X2, . . . , Xn) be a random sample of X where X − µ d
= µ − X. Then

(X1−µ,X2−µ, . . . ,Xn−µ)
d
= (µ−X1, µ−X2, . . . , µ−Xn), and (X(1)−µ,X(2)−

µ, . . . ,X(n) − µ)
d
= (µ − X(n), µ − X(n−1), . . . , µ − X(1)). This latter equal in dis-

tribution statement implies that X(i) − µ
d
= µ − X(n+1−i). We first apply these

statements to show that the rgd estimate of location is unbiased for µ. Using rgd
and X in equation (1), rgd(e, |x0 − θ1|) = 0, for n = 3k, k a positive integer, gives

the solution θ̂ = 0.25(x(k) +x(k+1) +x(2k) +x(2k+1)). Now k+ (2k+ 1) = n+ 1 and

k+ 1 + 2k = n+ 1 so that X(k)−µ
d
= µ−X(2k+1) and X(k+1)−µ

d
= µ−X(2k). We

take expectations to obtain E(X(k)) + E(X(2k+1)) = E(X(k+1)) + E(X(2k)) = 2µ.

Therefore E(θ̂) = 4µ
4 = µ.

For the residual method of estimation, start with the statement about the cen-
tered order statistics being equal in distribution and apply the same operation to
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both sides; i.e. subtract E(Z(i))s = kis from the corresponding terms on both sides
to obtain

(X(1) − µ− k1s,X(2) − µ− k2s, . . . ,X(n) − µ− kns)
d
=

(µ−X(n) − k1s, µ−X(n−1) − k2s, . . . , µ−X(1) − kns)
but by the symmetry of the distribution, ki = −kn+1−i, i = 1, 2, . . . , n so that the
right hand side becomes (µ−(X(n)−kns), µ−(X(n−1)−kn−1s), . . . , µ−(X(1)−k1s)).

Now the residuals are Vi = X(i) − kis so that (V1 − µ, V2 − µ, . . . , Vn − µ)
d
=

(µ− Vn, µ− Vn−1, . . . , µ− V1) and so Vi − µ
d
= µ− Vn+1−i, i = 1, 2, . . . , n. Thus,

E(Vi − µ) = E(µ − Vn+1−i), i = 1, 2, . . . , n or E(Vi) + E(Vn+1−i) = 2µ, i =
1, 2, . . . , n. Now for i = k, n + 1 − i = 2k + 1 and for i = k + 1, n + 1 − i = 2k.
Thus, E(V(k) + V(k+1) + V(2k) + V(2k+1)) = 4µ. So solving equation (1) with V for

the case n = 3k again gives E(θ̂) =
E(V(k)+V(k+1)+V(2k)+V(2k+1))

4 = µ.
For all simulation examples, n = 20 and the standardized variables are N(0, 1)

for the normal case, and U
(
−
√
12
2 ,

√
12
2

)
for the uniform case. Simultaneous esti-

mation for µ and σ is done for the full data set and for a reduced data set with
the number of remaining points being h = 6, 11, 15. Table 7 gives the results for
both the normal and uniform distributions. Row 1 gives the average value of the
GDCC estimate of µ (no residuals used) for the available data set, h = 6, 11, 15, 20.
The sample standard deviation appears in parentheses to the right of each average.
Row 2 gives the average value of GDCC(θ|s), the residual method for estimating
µ. Row 3 is the same as row 2 except the true σ is used and not the estimate s.
Note that, as expected, the standard deviation is less for row 3 than for row 2.

Table 7: Estimation of µ and σ with the GDCC Method for Full and Reduced
Data Sets

sampling distribution N(30, 25)
h 6 11 15 20

GDCC(θ|x) 24.53(1.50) 26.70(1.35) 28.15(1.11) 29.76(1.14)
GDCC(θ|s) 29.74(2.09) 29.67(1.22) 29.74(1.05) 29.69(1.01)
GDCC(θ|σ) 29.89(1.43) 29.83(1.15) 29.76(1.06) 29.68(1.01)

sampling distribution U(5, 15)
h 6 11 15 20

GDCC(θ|x) 6.70(0.77) 8.09(0.87) 8.99(0.87) 10.21(0.84)
GDCC(θ|s) 10.10(1.63) 10.15(1.13) 10.17(0.79) 10.20(0.62)
GDCC(θ|σ) 10.22(0.75) 10.21(0.78) 10.22(0.71) 10.17(0.59)

Each table entry is the mean of 50 samples followed by the sample SD of these
samples. An important point to observe from this table is that when all the data are
used all methods are unbiased, but the residual method has the smaller variation.
Both distributions confirm the same thing and although not shown, other computer
runs substantiated this.

For h < 20 it is clear that as the sample gets increasingly truncated, the ordinary
nonresidual method is biased whereas the residual method remains unbiased. As
expected, as h decreases the standard deviation of the simultaneous estimate of
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µ increases. Rows 2 and 3 indicate that knowing σ helps in the estimation of µ
by decreasing the standard deviation. Note that this exactly parallels the classical
estimation of µ and σ but with the the order of estimation reversed.

In order to show the generality of this censored data estimation technique, a run
was made of 50 samples of N(30, 25) in which h = 11 but the censored data was
spread throughout the n = 20 original observations. The GDCC residual method
gave an average of 30.13 with a standard deviation of 1.26. This is very close to
the value in Table 7 for the normal case with h = 11.

9. Gupta’s (1952) Normal and Exponential Examples

Gupta (1952) has two normal distribution examples which we will compare to
the CES method with GDCC. In his first example only 119 of 300 observations are
available on the lifetime of electric lamps. Grouped data are used and the mid-
points of the intervals are used as the data. Two GDCC comparisons were used:
(1) midpoints are used for the data so that there are many tied values and (2) each
data point is made unique by randomly selecting the correct number of data points
within each grouped set. Gupta denotes his estimates by stars and his notation
is retained. The following two tables give his result and the corresponding GDCC
estimates.

Table 8: Gupta’s First Example

statistic Gupta GDCC random GDCC midpoint
µ∗ 1502 1507 1498
σ∗ 202 212 200

It is apparent from the table that the tie breaking procedure of evaluating GDCC
allows this procedure to work on data that has a large number of ties. It is also
apparent that in this example the robust GDCC method is very similar to Gupta’s
result.

In Gupta’s second example only the first 7 of 10 number of days to death after
an inoculation are recorded for some mice in an experiment. Because it is a small
data set, Gupta uses three of his methods, as labeled below in Table 9; he also
used the log10 transformation on the number of days to death to achieve better
normality. The retransformed estimate appears in parentheses (number of days).

Table 9: Gupta’s Second Example

Gupta’s CES

statistic best linear alternative linear MLE GDCC
µ∗ 1.746(55.7) 1.784(56.0) 1.742(55.2) 1.751(56.3)
σ∗ 0.101 0.094 0.072 0.100

Again it is clear from this table that the robust GDCC procedure gives com-
parable results. It should be noted that, when a different sampling distribution is
assumed, if the expected values of a standardized random variable are available,
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then the GDCC method can be used to obtain estimates whereas Gupta’s method
is only for the normal distribution. Our next example is exponential.

10. Censored Data Estimation for the Exponential Distribution

The two parameter exponential distribution with density function f(x) = 1
σ exp

(
x−θ
σ

)
, x >

θ is used. The standard exponential is obtained by taking θ = 0, σ = 1. The pa-
rameter θ can be thought of as a time delay until the exponential variate starts.
The overall expectation is µ = θ + σ. Since σ estimates both a location and a
scale parameter, the simulation results are presented differently than the earlier
simulation tables. Simulations were run separately for h = 6, 11, 15 with θ = 0 and
σ = 10. The quantity h is the number of observations remaining after censoring the
n− h right-most observations. For each run, the censored estimation (h < 20) and
the full sample (n = h = 20) estimation are done and given in one of the columns.
In each case, the number in parentheses is the sample standard deviation for the 50
simulations. Row 1 of Table 10 gives the average of the GDCC location estimator
which for the exponential would be the average of the 1/3 and 2/3 quantiles of the
exponential (θ = 0, σ = 10) which is 7.52. The 2-step method estimates σ and then
θ, and since θ = 0, row 2 gives the average of 50 GDCC location estimates for the
residuals (x0 − sq) and this should be close to zero, because a study of the distri-
bution of these residuals shows it to be nearly symmetric. Since s also estimates
location, its average from the estimates in row 2 are given in row 3; the averages
are reasonably close to the true value of 10. Row 5 gives the average of 50 GDCC
location estimates for the censored data; they behave as expected, increasing as the
number of observaions increases. Row 6 is like row 2 except that the censored data
are used; note that the table entries are close to zero (θ = 0). Row 7 is like row 3
except the censored data are used and it gives the average of s for 50 simulations
that were used in row 6; again the values are close to 10. Rows 4 and 8 give the
GDCC estimate of µ for the full data set (row 4) and the censored data (row 8).
In Gupta’s second example, the overall estimate would come from a single estimate
as in row 8. These results clearly show that GDCC and in general the CES 2-step
method of estimation should be further studied because of its potential value in
improving estimators.

Table 10: Simultaneous Estimation of θ, σ, and µ = θ + σ for an Exponential
Variate x > θ, θ = 0, σ = 10, with n = 20

Full 1. GDCC Loc Est 7.49(2.18) 7.74(2.24) 7.31(1.96)
Data 2. GDCC2 Loc Est 0.014(0.92) 0.31(1.11) -0.11(1.08)

3. Mean of s 9.62(2.73) 9.24(2.33) 9.26(2.70)

4. Mean of θ̂ + s 9.63(2.62) 9.54(2.45) 9.25(2.25)
h

6 11 15
Cen- 5. GDCC Loc Est 1.78(0.81) 3.63(1.46) 4.80(1.32)
sored 6. GDCC2 Loc Est 0.036(0.85) 0.26(0.95) -0.014(0.93)
Data 7. Mean of s 9.20(4.31) 9.28(3.67) 9.26(2.90)

8. Mean of θ̂ + s 9.23(3.91) 9.54(3.46) 9.24(2.50)
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If all the data had been shifted, θ > 0, then the estimate of θ would be estimating
the point at which the exponential process starts. In Gupta’s second example, it is
easy to obtain the GDCC estimate assuming an exponential model. Assuming the

exponential model above θ̂ = 38.86 and s = 23.86 so that µ̂ = θ̂ + s = 62.45. Note
that this estimate is higher than the estimate given by the log10 model assumption,
and hence, the choice of the model is probably more important than the elaborate
error analysis of any particular model. A simplistic Kolmogorov test of fit was
performed on the data by randomly completing the sample size to n = 10 under
the assumed model and using the estimated parameters of the null hypothesis.
The test statistic was 0.1756 for the exponential model and 0.1301 for the log10
transformation. Neither of these is close to any significance and so the choice of the
model would be subjective. In this example, the choice of the model involves more
than just an evaluation of tests of fit because deciding θ > 0 in the exponential
model is assuming an exponentially delayed action characteristic.

11. Conclusion

The solution of equation (1) gives remarkable location estimates. Only a few cor-
relation coefficients — Kendall, GDCC, and Pearson — have been examined using
equation (1) and all provided very good location estimators. The most surprising
result may be seen in Table 6, where the two-step CES method of estimating µ with
GDCC is just as good as x̄ when the data are normal, but with just a few possible
outliers, is better. Also the GDCC two-step method reduces the variability of the
median and is robust so that this method should be used in all statistical analysis.
Because it is distribution free, the GDCC location estimator is valid and surpris-
ingly accurate for the Cauchy distribution. Sections 8 and 9 show that there are
many possible worthwhile extensions of CES methods into a wide variety of areas.
Future work should formulate a theoretical reason for why the residual or two-step
method improves the estimation. This location work extends to the location esti-
mation part of regression analysis. CES results in regression are more general than
least squares and CES methods in variation show they are just as accurate for truly
normal data while they are considerably better when there is any deviation from
normality.
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