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The Greatest Deviation Correlation Coefficient
and its Geometrical Interpretation

By Rudy A. Gideon

The University of Montana

The Greatest Deviation Correlation Coefficient (GDCC) was introduced by Gideon and
Hollister (1987).  The GDCC was shown to possess all the properties of a rank based
correlation coefficient, a new tied value procedure was introduced, the null distribution
for independence was given, and a population interpretation was given.  This paper
expands the exact distribution up to sample sizes 15, gives a more intuitive definition
based on the graph of the data, and demonstrates the geometrical uniqueness of the
definition by 900 rotations of the graph.  An analogous graph is used to give a geometric
definition of the population or theoretical value of GDCC. Four correlation coefficients,
GDCC, Kendall’s, Spearman’s, and an absolute value rank correlation coefficient are
computed on the scatterplot of the ranked data by simple counting methods.  The
significance of GDCC as a robust correlation coefficient is illustrated and the use of the
asymptotic distribution is demonstrated.

1. The Mathematical Definition of GDCC

This paper brings together components of the GDCC in order to make it a useful tool for
studying the relationships between variables.   We start with the basic or mathematical
definition.
The method will be illustrated with the YMCA data that appeared in the 1987 article.
The data came as the ranks ( won-lost record versus Sportsmanship) of 16 teams of 4th

and 5th graders in a YMCA basketball league. The Sportsmanship rank was a summary
tally of a weekly evaluation by team coaches and officials.    The data is reproduced here
in Table 1.

TABLE 1: YMCA  team ranking in Sportsmanship and won-lost record
pi 14 11 16 2 12 13 7 9 10 3 8 1 15 6 4 5

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The Won-Lost rank data is the lower row and can be considered the independent variable
while the upper row is the Sportsmanship rank and is taken as the dependent variable. By
viewing the graph of this data ( see Graph) one immediately notices that (4,2) and (13,15)
are unusual data points.   We write the data in the form 16,...,3,2,1},,{ =ipi i ; that is,
numerically ordered by the won-lost rankings.

The general definition of the GDCC, with sample size n, is
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where the denominator is the greatest integer function evaluated at n/2, and I is the
indicator function.   The indicator function is 1 is the expression is true and 0 if false.
For small sample sizes this is easy to compute by hand, and the layout is shown for the
YMCA data in Table 2.   Three columns are necessary, }1,,{ ii pnpi −+ where the first
column of the original data must be in numerical order.  From these columns the elements
in the summations in the formula above are computed.

This computational operation follows:
Column 1 consists of values of i =1,2,3…16 and column 2 is the corresponding values of

pi (Sportsmanship rank).  In order to compute ∑
=

>
i

j
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)( , labeled I-sum-R in column 3,

a simple procedure is used.  For row 1 (i =1) simply count how many p-ranks (the p
column)  there are in rows 1 and above that are greater than i=1.  Since p1 =14, there is
only one, namely 14 itself, so the 3rd column entry is 1.  For row 2 (i =2), p2 =11 and both
14 and 11 (p1 and p2) exceed i =2 and hence the corresponding column 3 value is 2.
Continue down the column.  One last example: for row 7 (i =7) we examine the number
of entries from {p1,p2, . . . ,p7} =  {14,11,16,12,13} which exceed 7.  There are five.  In
the exact same manner, columns 1 and 4 (the reverse column) are used to calculate the
values in column 5 whose formula is the left hand side of formula (1).  The maximums of
columns 3 and 5, 6 and 3,  are conveniently put on the bottom of columns 3 and 5.  Then
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TABLE 2: Calculation of the Greatest Deviation Correlation Coefficient

column 1 column 2 column 3 column 4 column 5
i pi I-sum-R n+1-pi I-sum-L
1 14 1 3 1
2 11 2 6 2
3 16 3 1 1
4 2 3 15 2
5 12 4 5 2
6 13 5 4 1
7 7 5 10 2
8 9 6 8 2
9 10 6 7 2
10 3 5 14 2
11 8 4 9 2
12 1 3 16 3
13 15 3 2 3
14 6 2 11 2
15 4 1 13 1
16 5 0 12 0
maximum 6 3
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2. The Geometrical Definition of  GDCC

We now make the transition from the formula calculation of gdr  to a graphical

counting technique.  The scatterplot of the YMCA data 16,...,3,2,1},,{ =ipi i  is given
in figure 1.  The lines with slopes 1±  have been added to facilitate the counting.

First, the partial sum ∑
=

>
i

j
j ipI
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)(  is merely the count among the first i pi-ranks of

those that are strictly greater than i; i.e., the data points in the scatterplot strictly
above and to the left of the point (i,i) on the +1 diagonal.  Points on the right hand
side of  the defining rectangle are included in the count; thus, the counting region is
closed on the right but open on the bottom.  A maximum of 6 is achieved at i=9, and
the borders of this rectangular region are shown on the graph.  Note that the point
(8,9) on the lower is not counted because of the strict inequality whereas the point
(9,10) is counted.   Thus, there are 6 points for the maximum.  If (8,8) is used to
define a counting region, the maximum of 6 is also achieved.
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)1()1(  is the count among

the first i pi-ranks of those that are strictly less than n+1-i = 17-i; i.e., those points that
are on the vertical or to the left and strictly below the point (i, 17-i) on the –1
diagonal.  A maximum of 3 is achieved at i = 12 with  the region containing the 3
points  shown in the figure.  The maximum is also achieved at i=13, as is easily seen
in the figure.

It is clear that the two parts of the numerator of gdr  can be calculated by traversing
the 1±  diagonals with moving rectangles and determining which rectangular areas
contain the maximal number of data points.  The number of points in each rectangular
region 16,...3,2,1=i  will correspond exactly to the numbers in the I-sum-R and I-
sum-L columns of Table 2.

Geometrically, it may appear that some information is lost or a different value of
gdr could be obtained by traversing the 1±  diagonals on the other sides.  The next

section relates this question to the general properties of gdr . The geometrical feature

of this section was used in obtaining the asymptotic distribution of gdr .  Reference=?

3. Geometrical Uniquenes of gdr

The information in the scatterplot should remain the same if the graph is rotated 090
and gdr  is calculated over on this new orientation.  When the graph is rotated 090 , let

the axes be relabeled in the usual left to right and vertical manner and recompute  gdr .
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This 090  rotation will be done three consecutive times.  A fourth rotation brings back
the original graph.

Let the notation )1,1( +−  denote the relationship of the counting rectangles to the

original orientation of the axes.  Thus, )1,1( +− means lower rectangle for the –1
diagonal and upper rectangle for +1 diagonal, the scheme in figure 1.  We now
explain what happens

to the data  under three consecutive 090  rotations; the orientation of the counting
rectangles relative to the original figure, and the new value of gdr .  In Table 3 the first
row is the data after a rotation, the row the orientation of the counting rectangles
relative to the original graph, the third row is the value of gdr , and the fourth row is
what is effectively being calculated as related to the original data, x = i, won lost
ranks, and y = pi, the ranks of sportsmanship.

                                        Table 3:Rotational Effects on Figure 1
original first rotation second rotation third rotation

data {i,pi} {17-pi,i} {17-i,17-pi} {pi,17-i}
diag sides )1,1( +− )1,1( +− )1,1( +− )1,1( +−

gdr  value -3/8 3/8 -3/8 3/8

gdr (.,.) (x,y) (x,-y) (-x,-y) (-x,y)

Not only does gdr  maintain the same absolute value, but the counting rectangles while
traversing the 1±  diagonals give exactly the same sequences of numbers.  Thus, the I-
sum-R and I-sum-L columns of the rotations are exactly the same as for the original data.
However, they may be in reverse order.  This connects the geometry to property 4 of
Section 3 and fact (d) on page 654 of the [1987] paper.  The reader is invited to perform
these calculations by rotating the figure, relabeling the axes and recomputing gdr .

4.          Population Definition of GDCC

This section repeats the population interpretation of gdr  in the 1987 paper and interprets it
relative to the geometrical ideas of the sample definition. Let ),( YX  be a continuous
bivariate random variable with marginal distribution functions GF  and , respectively.
Let ))(),((),( YGXFVU = , and define the Copula function, Nelson (1999),

)1,()1,( ttCtVtUP −=−<≤
).,()1,(),( ttCtCtVtUP −=>≤

A graph of the density of ),( VU  is given in which the bivariate normal from which it

came has means 0 and standard deviations of 32 and 2 , and covariance 3.    The
population value of gdr  is

)].,()1,([sup2)1,(sup2
1010

ttCtCttCr
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                                    (2)
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The right hand side of the population value of gdr  corresponds to the right hand side of

the statistic gdr , ∑ =
>

i

j j ipI
1

)(max .  The left hand side )1,(sup ttC − corresponds to

∑ =
>−+

i

j j ipnI
1

)1(max . The diagonal lines in the ),( VU  plane, slopes 1± ,  are used

in exactly the same manner to move rectangles along and determine the rectangle with
the largest volume under the density of ),( VU . Rather than count points the population
value seeks the rectangles with maximum volume under the density of ),( VU .

For the specific bivariate normal for the figure, the correlation coefficient is

.83)322(3 ==ρ   In formula (2) the supremums, as explained in the 1987 paper
occur at t=1/2 and
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Thus =gdr  2(0.311179)-2(0.18882)=0.62235 – 0.37764= 0.2447.

For the bivariate Normal, the population value of gdr  is simplified to

ρ
π

1sin
2 − .  So, directly, 2447.0

8
3

sin
2 1 =−

π
.

The volumes 0.3118 and 0.1888 are the volumes of the rectanglar regions along the
diagonals emanating from the point (1/2,1/2) under the (U,V) density.  In the figure of the
(U,V) density the volume 0.3112 is the region under the raised part of the density , near
the(0,0) point.  The 0.1888 quantity came from the volume under that part of the density
dropping off toward zero, near the point (1,0).

5.  The Null Distribution of The GDCC

The null distribution for gdr  in the 1987 paper was given exactly up to sample size n
= 10.  Table 5 includes this original table and expands to list the probability
distribution up to sample size n =15. The symmetry of the Null Distribution is used so
that only probabilities of positive outcomes and zero are given.  A critical value table
was given in the original paper for hypothesis testing for alpha values of 0.10, 0.05,
and 0.01.  An interpolation term was given so that a randomized test could be used to
obtain almost exact alpha levels.  With the exact distributions for n =11 to 15, the
simulation estimates can be replaced by more exact values.  For example if n = 15
and a two-sided test of independence is desired, then from the original paper, to
obtain a two-sided test with 05.0=α , reject Ho : independence, if 74≥gdr  and

reject with probability  0.399 if .73=gdr  The old probability was 0.36640.  Thus,
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Table 4:   Null Distribution: Greatest Deviation Correlation  Coefficient
                                               frequency of outcomes, symmetric about zero
                                                                         sample size
outcome n=3 4 5 6 7 8 9 10 11
0 4 16 16 256 2848 11016 63720 1462104 14705496
1/5 0 0 0 0 0 0 0 562932 6664068
¼ 0 0 0 0 0 11772 123660 0 0
1/3 0 0 0 196 500 0 0 0 0
2/5 0 0 0 0 0 0 0 479120 5128736
½ 0 3 51 0 0 2480 18992 0 0
3/5 0 0 0 0 0 0 0 36672 732128
2/3 0 0 0 35 595 0 0 0 0
¾ 0 0 0 0 0 399 6927 0 0
4/5 0 0 0 0 0 0 0 4623 80719
1 1 1 1 1 1 1 1 1 1
TOTAL 3! 4! 5! 6! 7! 8! 9! 10! 11!
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                                                                           sample size
outcome n = 12 13
0 83238912 1449824256
1/6 146029788 1509191388
1/3 32023332 633876372
½ 19046768 216133376
2/3 727632 28456272
5/6 53823 940863
1 1 1
TOTAL 12! 13!

                                                                        sample size
outcome n = 14 15
0 30683667456 330550419456
1/7 11736567360 269200784448
2/7 13614341004 150850248588
3/7 2117148516 57739685652
4/7 758459648 9645298832
5/7 20168080 1114989392
6/7 627263 10967359
1 1 1
TOTAL 14! 15!

This is just being saved for now:

Column 1 is headed by i, the won-lost ranking, Column 2 by pi, the Sportmanship ranks,
and column 4 by n+1-pi, called the reverse ranks.   The computations are shown in

columns 3 and 5 and are the terms ∑
=

>
i
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)( , labeled I-sum-R, and the terms
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)1( , labeled I-sum-L, respectively.  The hand, eye, brain algorithm for

creating column 3 from columns 1 and 2 is exactly the same for column 5 using columns
1 and 4.  Put fingers under the i of column 1 and under the corresponding positions on
columns 3 and 5 and count the y ranks above that are strictly greater than i, and enter the
result.  Move down or increase i and repeat.    With just a little practice, it is easy to
perform this operation without really thinking of these formulae.  the maximums used for
GDCC are given at the bottom, 6 and 3 for this data.  Thus rgd = -3/8.


