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RANDOM VARIABLES, REGRESSION, AND
THE GREATEST DEVIATION CORRELATION COEFFICIENT

 RUDY A. GIDEON
University of Montana,  Missoula

Summary.  For a bivariate random variable (X, Y),  a general definition of a slope parameter is
given for the simple linear regression model.    A regression equation is defined  for a
nonparametric correlation coefficient based on greatest deviations such that the slope parameter
is obtained when the equation is solved.  This result is explored geometrically and then is used to
relate the asymptotic distribution of the sampling estimate of the slope  to the asymptotic
distribution of the correlation coefficient.  The bivariate normal and Cauchy distributions are
used to illustrate the principles and the general concepts apply to any  correlation coefficient.

1. INTRODUCTION
If (X,Y) is a jointly continuous random variable, then if the appropriate moments exist,

E(Y|X=x) is defined as the  regression line of Y on X.  The bivariate normal distribution with

parameters (µ1, µ2 ,σ1
2 ,σ 2

2, ρ)  where the subscripts  1 and 2 are for X and Y, respectively, has
the form E(Y X = x) = µ 2 + (σ2 σ1)ρ(x − µ 1) .  Textbooks, such as Ross(1988) use the
bivariate normal distribution to show that the least squares criterion  recovers this regression
equation.   In fact, Ross states that "the best linear predictor" in cases where the means,
variances, and correlation are known is given by choosing "a" and "b" to minimize
E(Y − (a + bX))2 .  It is the purpose of this article to show that there are other "best linear
predictors" such as the method in this article using the Greatest Deviation Correlation
Coefficient, rg (Gideon and Hollister (1987)), which recover this regression equation for the

bivariate normal distribution. Even further, the method presented here can recover the
theoretical regression line for the bivariate Cauchy distribution after  a more general definition of
a slope parameter is presented.   A normal  distribution example will be given to illustrate the
general nature of the rg method, and then a more general definition is given for a slope

parameter so that the technique can be used for the Cauchy distribution.   A general framework
of regression based on random sampling with rg has been given in Gideon, Rummel, Li (1994)

and Gideon et al. (1993) and this paper gives some theoretical justification for such work.  The
underlying basis, in using  nonparametric correlation coefficient  rg, seems to be an equalizing of

the "distance" away from perfect positive and negative correlation  and this will be seen by
studying the distribution of (X,Y-bX) where b is the regression coefficient.
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2. THE BIVARIATE NORMAL AND THE REGRESSION CRITERIA (MSSV)
In order to make the concepts clear, the standardized bivariate normal distribution is

used first; thus, X and Y have N(0,1) marginal distributions and ρ  is the correlation parameter.

The theoretical regression line is E(Y X = x) = ρx  and this is pictured in Figure 1 when ρ >0.
Let φ (x,y)  be the bivariate density.  Let Qi refer to the set of points in  quadrant i, i = I, II, III,
IV respectively, and P(Qi) = P((X,Y) is in Qi).  It is known that P(Q1) = P(Q3) =
1

4 + sin −1 ρ
2π  and that P(Q2) = P(Q4) = 

1
4 − sin −1 ρ

2π .     Let

A = {(x, y):x ≥ 0, 0 ≤ y ≤ ρx},  so that P(A) =  φ (x, y)dydx
0

ρx

∫
0

∞

∫ = (sin−1 ρ) 2π

represents the probability of an observation falling in region A.  This is shown in Rummel's
Dissertation (1991).   In Figure 1, rg is written as r(GD) and its relationship to these bivariate
normal probabilities is shown.  In Q1 and Q3 the volumes are split into two pieces about the

dotted regression line.  The dashed line is the y = x line, and the correlation is 0.6.
Consider the following criterion to fit a regression line (y=bx) to the standardized

bivariate normal; pick b to equalize the "distances" which are really the volumes or probabilities
above and below the line.  Clearly, from Figure 1 with  the contour lines  for φ (x,y)  shown,  it
can be seen that the probability of landing in the regions above or below each  line  are equal
and some restriction must be made.  Let V1 and V4 be the probabilities above the line and

below the line within quadrants Q1 and Q4.  First note that for b = ρ , V1=P(Q1) - P(A)  = 1/4
and  V4=P(Q4) + P(A) = 1/4 so that this choice of b would satisfy the regression line criterion.

Now consider b = ρ + δ  where δ  may be a plus or minus increment, and let V i(δ )  be
the probabilities, i=1and 4  as a function of this increment.  Let v be the probability of the region
(x,y): x > 0,bx ≤ y ≤ ρx }{  if δ <0 and similarly, for δ >0 where bx > ρx .  Now for δ <0,

V1=1/4 +v and V4=1/4-v and likewise for δ >0,  V1=1/4 -v and V4=1/4+v.  For example, if
δ = −ρ,b = 0, v=P(A), and V1=P(Q1)>P(Q4) =V4 since we are considering the case where
ρ >0.  If δ = 1− ρ,b = 1, V1=P(Q1)/2 = 1 8 + sin −1 ρ 4π < V4 = 3 8 − sin −1 ρ 4π .  For

arbitrary, δ (v), the sum of squares is V1
2 + V4

2 = (1 / 4 + v)2 + (1 / 4 − v)2 ,and it is easy to see
that this sum of squares is minimized when v=0, or δ =0.  Thus, if this criterion of minimizing the
sum of squares of probabilities   (MSSV, v for volume) to the right of a vertical line through the
center of the distribution is used to determine a regression line, the correct line is chosen.
Because of the symmetry of the bivariate normal distribution,  if MSSV is used  restricted to Q2
and Q3, the same result occurs.  This result also holds for the Cauchy distribution as seen in a

later section.
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In what follows, it will be shown that a method  of choosing a regression line with rg,

the Greatest Deviation correlation coefficient, involves equating probabilities so that essentially
rg is a modified MSSV estimation procedure for the slope parameter.  The correlation
coefficient rg is computed by taking the difference between two supremums involving

probabilities; the first measures probability away from perfect negative correlation and the
second  measures probability  away from perfect positive correlation (see equation (3), and this
concept will be illustrated after (3)).  The rg slope parameter is the one that equalizes this

"distance".  In the bivariate Normal and Cauchy cases this method will agree with the MSSV
idea because of their ellipitcal symmetry.  However, for distributions with non-homogeneous
variance the rg method does not necessarily agree with MSSV but is close enough to be called

a modified MSSV.  An example not presented here illustrated the fact that if the distribution of
(X,Y − βX)  is symmetric with respect to a horizontal line in the case where
E(Y X = x) = α + βx, then the rg selected  the correct regression line.  This suggests that rg
gives the correct regression line in all cases in which the distribution of (X,Y − βX)  is symmetric
about a horizontal line if β  is the true parameter.  These concepts will now be developed for rg
and the normal distribution.

3. THE REGRESSION EQUATION FOR   rg
Let  (X,Y) be a bivariate random variable and ρ(X,Y ) = E( X − EX)(Y − EY) (σ1σ2) ,

the correlation parameter.  With a similar notation,  rg(X,Y) is the rg correlation parameter.  For

the standardized bivariate normal, let ρ(X,Y ) = ρ, and it is shown in Gideon and Hollister
(1987) that
                rg (X ,Y ) = 2(sin −1 ρ) π                                                         (1)  

It is straight-forward to show  that for any bivariate normal random variable
ρ(X ,Y − βX) = (ρσ2 − βσ1) σres  where

σ res = (Var(Y − βX))
1

2 = (σ2
2 − 2βρσ1σ2 + β 2σ1

2)
1

2 .  For the standardized case,
ρ(X ,Y − βX) = (ρ −β ) (1− 2βρ + β2 )

1
2 = ρβ ,say.  Thus,

rg (X ,Y − βX ) = 2(sin −1 ρβ ) π .
This paper gives a theoretical justification of fitting a regression line with rg and one of

the main ideas can now be shown.  If (x,y) is an nx2 random sample from (X,Y), then  solving

the equation rg (x, y − xβ ) = 0 for β  gives the rg estimate of the slope (Gideon et al, 1994).

As the sample goes to infinity, in the limit the equation becomes rg (X ,Y − βX) = 0.  It is now
shown that the unique solution is, for the standardized bivariate normal, β = ρ.  The derivative

of rg (X ,Y − βX)  with respect to β  is −2 1 − ρ 2 (πσres
2 )  which is less than zero for all
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ρ2 ≠ 1.  Therefore, rg (X ,Y − βX)  is monotonic decreasing in β   and the regression equation
has a unique solution.  The solution to
                 rg (X ,Y − βX) = 0                                                           (2)

gives the equation 2 sin −1 ρβ π = 0  which implies that β = ρ.  The next section will use
geometrical considerations to relate this result to the MSSV criterion.

4. MSSV, rg,  AND THE BIVARIATE NORMAL

Let the jointly continuous random variable (X,Y) have marginal cumulative distribution
functions (cdf) F(x) and G(y) and joint cdf H(x,y).  Let U=F(X) and V=G(Y), the probability
integral transformations, and
C(u, v) = P(U ≤ u,V ≤ v) = P(X ≤ F−1(u),Y ≤ G−1(v)), for 0 ≤ u,v ≤ 1,  the Copula function .

In Gideon and Hollister (1987), it is shown that
                  rg (X ,Y ) = 2sup

0 ≤t ≤1
C(t ,1− t) − 2sup

0≤ t ≤1
(t − C( t,t))                        (3)

          = 2 sup
t

H(F−1(t),G−1(1 − t)) − 2sup
t

(t − H (F −1 (t), G−1(t)).

The use of the population definition of rg in equation (3) will first be illustrated, as before, with

the standardized bivariate normal with correlation coefficient  ρ .  Let  Φ  be the cdf of a N(0,1)
random variable.  Then for this case F = G = Φ and for a fixed t in the (0,1) interval,
(F−1(t), G−1( t)) = (Φ −1(t), Φ−1(t))  and (F−1( t), G −1(1 − t )) = (Φ−1(t),Φ−1(1 − t)).  Because of
the  symmetry of a N(0,1) random variable, these two sets of points for t in the interval (0,1)
trace out lines through the origin with slopes +1 and -1, respectively.  Figure 2 demonstrates
geometrically the evaluation of the supremums in equation (3) by showing the evaluation for a

fixed t<1/2.  Figure 2a gives a1 = −a2 = Φ−1(t ) and a2 = Φ−1(1 − t ).  Then Figures 2b and 2c
show the regions where the cdf's are evaluated for  two cases; 0 < β < ρ  in 2c and β = ρ > 0

in 2b.  The value of t was -1.28, the 10th percentile.  Technically, X and (Y − Xβ ) σ y− xβ

must be used to keep the parametric equations above as lines with slopes ±1 .
In this section, volume rather than probability of events is used because the geometrical

view is being stressed.  Let W2(t) be the volume over the infinite rectangle with corner at
(a1,a1)  open towards the northwest in Figures 2b and 2c.  Let W3(t) = H(F−1(t),G−1(1 − t)),

the volume over the infinite rectangle with corner at (a1,a2 ).  At t=1/2,  the corners of the
rectangles are at (0,0) and W2(1 2) = P(Q2)  and W3(1 2 ) = P(Q3) .  The geometrical view for
a t>1/2 in shown in Figure 3.  With this notation and for a fixed β ,
rg (X ,Y − βX) = 2sup

t
W3(t) − 2 sup

t
W2 (t).

  Because of the unimodal and elliptically symmetric
nature of the bivariate normal distribution and geometrical considerations,  it is seen that the two
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functions W2(t)  and W3 (t)  involved in the two supremums in the evaluation of  rg (X ,Y − βX)

will have their maximums achieved at t=1/2.  Since Φ
−1(1 2) = 0, the coordinates of points

where the maximums are achieved  are (0,0) in Figures 2 and 3.  This means that in  Figure 2b,
rg (X ,Y − ρX) = 2 P(Q3) − 2P(Q2) = 0.

For the case in Figure 2c (0 < β < ρ)  it is clear that in comparing W2(t) to W3 (t)  that
W3 (t)  will achieve a greater maximum.  The result is that
rg (X ,Y − βX) = 2P(Q3) − 2P(Q2 ) = 2sin −1 ρβ π .  Earlier work showed that
rg (X ,Y − βX) = 0  only for β = ρ  because in this case X  and Y − ρX  are independent
random variables so that equation (3) becomes (where G is the marginal cdf of  Y − ρX ),
rg (X ,Y − ρX) = 2 sup

t
t(1 − t) − 2sup

t
(t − t2 ) = 2(1

2 * 1
2) − 2(1

2 − 1
4 ) = 0

.

At the earlier examples of β =0 and β =1, in rg X ,Y −β X( ) = 2(sin −1ρβ ) π , the value

of ρβ  is ρ  for β = 0  and − (1− ρ) 2( )1
2
 for β = 1.  These are now interpreted as the

difference between two volumes.  For β = 0, P(Q1) − P(Q4 ) = sin −1 ρ π = rg(X,Y) 2 and for

β = 1,V1 − V4 = −1 4 + (sin −1 ρ) 2π = sin −1 − (1 − ρ) 2( ) π = rg(X,Y − X) 2 < 0.  The
latter result contains a trigonometric identity that can be proved by making the substitution
ρ = cos t.  The quantity V1 is really measuring the "distance" (volume) of the proposed line
away from perfect negative correlation and V4 the "distance" away from perfect positive

correlation.  It should be made clear that V1 and V4 are volumes for (X,Y) whereas ρβ   above

refers to (X,Y -β X).  When (X,Y) is transformed to (X,Y -β X)
the region above the line y=β x  in Q1 gets stretched into all of Q1 and the region below the line

y=β x  in Q1and Q4 (for ρ >0 only) gets squeezed into Q4.  Thus, the volumes  (V1,V4) for

(X,Y) go to probabilities (P(Q1), P(Q4)) for (X,Y -β X).  Since V1 -V4 =rg(X,Y)/2 < 0, the

proposed slope gives a regression line that is still too far away from perfect positive correlation.
The concept of "distance" away from perfect positive and negative correlation can be made
clear by considering two absolutely continuous random variables (X,Y).  First let X=Y so that
there is perfect positive correlation.  Then by using formula (3) it is easily seen that
sup
0 ≤ t ≤1

C(t,1 − t) =1 2
 and that  C(t,t)=t so that  C(t,1-t) which measures distance from perfect

negative correlation is maximum at 1/2 whereas t - C(t,t) =0 for all t and distance from perfect
positive correlation is 0, a minimum.  It follows that rg(X,X)=1.  Second, let X = -Y so that

there is perfect negative correlation.  In this case C(t,1-t) = 0 for all t, and distance from perfect
negative correlation is 0.  It is easily shown that

sup
t

t − C(t ,t)[ ]= max sup
t ≤1 2

t,sup
t >1 2

(1 − t) 
  

 
  = max(1 2,1 2) =1 2

, and the distance from perfect
positive correlation is a maximum.  It now follows that rg(X,-X)= 2(0 - 1/2) =  -1.
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Thus, in a regression interpretation, the magnitude of rg X,Y −β X( ) measures twice the
volume difference from the true regression line, and this difference gives the excess distance
between perfect positive and negative correlation.    If this difference is negative, β  must
decrease but if the difference is positive β  must increase to obtain the true β .  If
rg X,Y −β X( )=0 then V1 − V4 = 0 and a MSSV parameter has been obtained.  This has a
direct analogous interpretation in sampling using rg in simple linear regression as given in Gideon

et al.(1994).  For example, in Gideon and Hollister (1987), there was a YMCA data set of 16
points; thus, in a point process, each point has weight 1/16.  Let (x,y) be this data, then
rg(x,y)=-3/8 = 2(3/16  -  6/16) = twice the "volume" difference from the true regression line.
For this data, the rg slope and intercept estimates are -.6076923 and 13.77308, respectively,

so that the sample regression line is ˆ y = 13.77308−.6076923x  and a β =0 is -3/16 away,
volume-wise, from the rg regression line.  A scatterplot of this data appears in Gideon et al.

(1989).  For β =0 the distance from a perfect negative regression is 3/16 whereas from perfect
positive regression it is 6/16, and this indicates that a negative slope (b= -.6076923) must be
used to balance the distances.

For a bivariate normal distribution with location and scale parameters µ1,σ1(µ2 ,σ2)  for

X(Y),  the solution of rg X,Y −β X( )=0 will be unique at β = ρσ2 σ1 ,  the correct parameter.
In order to complete the regression,  the intercept of the regression is given and again this is
based on the work in Gideon et al. (1992) and (1994).  Now
E(Y X = x) = (µ2 − ρσ2µ1 σ1 ) + ρσ2x σ1 .  A location estimate using rg is the average of the
1/3 and 2/3 quantiles; call this the rg-mean.   To complete the regression let  "a" be the rg-
mean(Y − ρσ2 x σ1), and the  rg theoretical regression equation is a + ρσ2x σ1 .  For the

bivariate normal X and Y − ρσ2X σ1  are independent and Y − ρσ2X σ1  is distributed as a
N(µ 2 − ρσ2µ1 σ1 ,σ res

2 ).   This distribution is symmetric about its mean and hence, the average
of the 1/3 and 2/3th quantiles will be the point of symmetry.  In conclusion for the bivariate
normal, the rg process recovers the correct regression  equation.  This is important because it is

necessary to show that for the analogous sampling process the estimated regression line will in
the limit converge to the correct equation.
5. SUMMARY OF MSSV AND rg METHOD

Before proceeding with the Cauchy  example in which the more general features of the
rg process become apparent,  a summary is given which will set the stage for the other

examples.  The rg process for the slope β  involved determining β  so that two volumes were

the same (the differences between two supremums).  It was seen that equalizing the volumes on
one side of a vertical line through (µ1,µ2 ) ,say L, could be thought of as choosing β  so that the
sum of squares of the volumes above and below the regression line was minimized.  For the
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bivariate normal, for 0 ≤ t ≤1 2  in the supremums, the comparison was on one side of L and
for t>1/2 on the other side.  By the symmetry of the distribution only one side needed to be
considered, and  then rg was a MSSV method.  In other  examples the joint distribution could
have a symmetry property that allows the rg method to produce the true regression line, but it

need not have the elliptical symmetry property like the normal about a line L.
In the limit, the population regression of least squares and rg are probably the same for

many distributions,  but in sampling estimation problems, volumes get replaced by relative
frequency counts, and significant differences can occur.  The overall minimization process
remains the same for both least squares and rg, but because a point can move to a distant outlier
without changing the volume of a region, rg is a robust regression as opposed to least squares

for which a distant outlier will destroy its good estimation properties.  When this happens,  the

absolute value of rg can be large on (X ,Y − ˆ β X)  where 
ˆ β  is the least squares estimate and

Pearson's correlation coefficient is zero.

The rg value of the slope β  occurred for a β  for which

                       H(F -1 (t),G −1(1 − t )) = t − H(F −1(t ), G −1 (t ))                       (4)
was true for all 0 ≤ t ≤ 1.  For this β , the distribution G is symmetric about µ x = E(Y X = x).

For t< 1/2 let y>0 such that µ x + y = G−1(1− t)  and µ x − y = G−1(t).  Then  the joint

distribution H of (X,Y-β X) where E(Y X = x) = α + βx = µx  satisfied
H(x,y + µ x ) + H (x,µ x − y) = H(x,∞),  and dividing by the right-hand side the following
condition on the conditional distribution is obtained.
H(x,y + µ x ) H(x,∞) + H(x,µx − y) H(x,∞) = 1.  This says that the conditional distribution
of(Y − βX X = x)  is symmetric about µ x .  Thus it appears that solving equation (2) will give the
true β  if the distribution of (X,Y) has the symmetry property that is the basis of the definition of
rg, mainly that there exists a β  such that the distribution of (X,Y − βX)  ,with H, F, G, the cdf's,

satisfies equation (5).  This is formalized in the next section.
6. SLOPE PARAMETER AND rg

In this section a general definition of a slope parameter for a class of bivariate symmetric
distributions is given and then equation (2) for the rg regression method is shown to yield this

parameter.
Definition 1.  For certain classes of symmetric continuous bivariate distributions, let H(x,y) be
the cumulative distribution function (cdf).  For values  of  β , consider the family of distributions
(X, Y-  β  X).  If a β  can be found such that the distribution of (X,Y - β X) is elliptically
symmetric about a line of zero slope, then the value of this β , say β (H), is said to be the slope

parameter, and H belongs to the class Η  of continuous regression symmetric distributions.
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Note that this defintion gives a slope parameter for the bivariate  regression models for
both the Normal and Cauchy distributions; it agrees with the expectation definition for the
normal case and extends the regression model definition to the Cauchy distribution where
expectations do not exist.  This defintion could be extended to  include distributions that are not
elliptically symmetric, but, instead, are only symmetric for each point on a horizontal line.  This
then would include nonhomogenous variance models and the classical regression model as
explained below.

For the standard univariate regression model where x is assumed fixed, say, Y =
α + βx + ε  and ε  has a symmetric distribution about zero, then for each fixed x, the
distribution of Y − βx = α + ε is symmetric about α .  Thus, for all  x, the conditional
distributions (x ,Y − βx)are symmetric about the zero slope line centered at α and β  is the

slope parameter even if the expectation of ε  does not exist.
It is now shown  for class Η  that the rg MSSV method gives the true slope parameter.

Let H* be in Η  for the bivariate random variable (X,Y), and let F* and G* be the marginal
cdf's of X and Y, respectively.  Let H, F, and G be the corresponding cdf's for the transformed
variables (X ,Y − β (H*) * X) , where G has a point of symmetry at its median and without
loss of generality, let this point be zero.  From the definition of β(H*)  and Η , following

properties hold
(a)  H(u, −v) = H(u ,∞) − H(u,v) ≡ F (u) − H(u,v) ,
(b) G(v) = 1 − G(−v) , which implies for 0<t<1,  G −1 (1 − t ) = −G −1 (t ) .

These properties (a) and (b) imply that equation (4) is satisfied at β(H*)  which means

that the greatest deviation correlation coefficient regression method has the correct population
value for the slope. The proof is as follows: from (a) and (b) and for all 0<t<1,
H(F −1 (t ),G −1 (1 − t )) = H(F −1( t ), −G −1 ( t))
= H(F −1(t ), ∞ ) − H(F −1 (t ),G −1 (t))
= FF −1( t ) − H(F −1 (t ),G −1 (t))
= t − H(F −1(t ), G −1 (t )).
Thus the supremums in equation (3) are identical at β = β(H*)  and
rg (X ,Y − β (H*) * X ) = 0.

 An application of this result would be that the rg method would give the correct slope

parameter for all bivariate t distributions including the case of one degree of freedom, the
bivariate Cauchy.

7. THE BIVARIATE CAUCHY
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The following example with the bivariate Cauchy distribution shows that the rg method is

applicable for all distributions; not just those with finite first and second moments.  The recent
book by Hutchinson and Lai (1992) states that the bivariate Cauchy "  L  is of limited interest as
it has no correlation parameter"; it may be that since the usual conditional expectation
E(Y X = x)does not exist, no one has known how to recover the regression line y = ρx  which
does exist if definition 1. is applied.   Hutchinson and Lai define the bivariate t and this density
with one degree of freedom should be what is defined to be the bivariate Cauchy with
correlation parameter ρ ;

h(x,y) = 1 + (x 2 − 2ρxy + y 2 ) (1 − ρ 2 )[ ]−3 2
(2π 1− ρ 2 )                         (5)

They defined the bivariate Cauchy to be this density  with ρ =0, but it should be defined as in
(5) and the following will show that the rg method recovers the correct regression line in exactly

the same geometrical manner as the bivariate normal case.
If the contour lines for this density are drawn for various ρ , they take the same elliptical

pattern as do the contour lines for the standardized bivariate normal.  For example, let u=x and
v = (y − ρx) 1 − ρ2 , then h(u,v) = 1+ u 2 + v2( )−3 2

2π , the bivariate Cauchy with ρ =0,
and the contours are circular and centered at the origin.  The cdf of this standardized density is

H(u,v) =1 4 + tan −1 u + tan−1 v + tan−1 uv 1+ u2 + v2( )[ ]/ 2π
.  The marginal or univariate

Cauchy is given by H(u,∞) = H(∞, u) = 1 2 + (tan −1 u) π .   Then the inverse of the univariate

Cauchy is F−1(t ) = u = tan(π(t − 1 2)),  and using this it is relatively easy to show that the cdf

of (U,V) satisfies the symmetry condition of rg in equation (4) and hence, rg (U,V) = 0.  It

seems to be clear that just like the bivariate normal if ρ ≠ 0, rg (X,Y ) ≠ 0 but
rg (X, Y − ρX( ) 1− ρ 2 ) = 0  and the rg method recovers the regression equation for the

(generalized, ρ ≠ 0) bivariate Cauchy distribution.  This also means that the rg method can

estimate the slope in a reasonable manner when sampling is done with the bivariate Cauchy
density in equation (5) using all  the data.  Previously existing estimation techniques would be
unstable as they  depend on moments existing, and  current robust  methods would try to delete
"outliers" to stabilize the process.  Some simulations were run to verify this and indeed the rg
method was up 10,000 times more efficient than least squares.

The intercept in this example is zero so no calulation for it is necessary.  If, however, the
bivariate Cauchy was shifted, the rg-mean intercept method would recover the center of the

distribution by averaging the one-third and two-thirds quantiles because of the symmetry of the
Cauchy distribution.
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In exactly the same manner as for the bivariate normal distribution, the value of
rg (X , Y)  can be obtained from equation (3) for any ρ  because the bivariate Cauchy has the
same elliptical symmetry properties and the supremums are achieved at t = 1/2.  Thus,
rg (X ,Y ) = 2 P(Q3) − P(Q2 )[ ]= 2 P(Q1) − P(Q4 )][ ].  The probabilities P(Q1)  and P(Q4 )  are
obtained by integrating density (6) over the first and fourth quadrants.  The double integral for
P(Q1)  is reduced to a single integral by changing to polar coordinates (r,θ)  and integrating out

the r to get 
P(Q1) = 1− ρ2 2π( ) (1− 2 sin θ cosθ )−1 dθ

0

π
2

∫
.  The integral over the fourth

quadrant, P(Q4 ) , is the same except the  limits of integration are from 
− π

2 to 0.  The
substitution of sin 2θ  for 2 sin θ cosθ  allows the use of a standard integration formula (#195
page 89 in Burington (1973)) involving the arctan function.  In evaluating the result of the

integration for P(Q4 )  at 
− π

2 care must be taken because the principal value is not the correct

result; use π − tan−1( (1+ ρ) (1− ρ) tan π 4) .  The final results with another identity are
P(Q1) = π −1 tan −1 (1+ ρ) (1− ρ) = sin −1 ρ 2π + 1 4 ,
P(Q4 ) = 1 2( ) − π−1tan −1 (1+ ρ) (1− ρ ) = − sin −1 ρ 2π +1 4 .

For the bivariate Cauchy distribution
rg (X ,Y ) = 2(P(Q1) − P(Q4)) = (4 π )tan−1 (1 + ρ) (1− ρ) −1 = (2 π )sin −1 ρ , and ρ  enters

into the rg correlation of the bivariate Cauchy identical to the bivariate normal.  It is also true

that region A as defined for the bivariate normal has the same value and interpretation.

P(A) = 1 − ρ2 2π( ) (1 − 2ρ sin θ cosθ )−1dθ
0

tan−1 ρ

∫ = rg (X,Y) 4
,

and(1 + rg(X ,Y) ) 4 = 1 + ((2sin −1 ρ) π )( )/ 4.

8. DISTRIBUTION FREE
Let (X,Y) be bivariate normal and let S have the distribution of the square root of an

independent Chi-square random vaiable with ν  degrees of freedom divided by its degrees of
freedom.  Then (X/S,Y/S)  = (X*,Y*) is a bivariate t and if ν=1, it is bivariate Cauchy.  The
division by S only changes the scale factor of (X,Y) and not the distribution of correlation rg.

Thus rg(X, Y-β X) = 0 implies rg(X*, Y*-β X*) = 0 and the rg method gives the same results

for β  over the class (X,Y), (X*,Y*), ν=1,2,  L,∞ .  This means that the rg confidence interval

for β  in Gideon et al. (1994) is valid for data from any of these bivariate distributions.

9. THE ASYMPTOTIC RELATIONSHIP BETWEEN THE DISTRIBUTIONS OF THE
CORRELATION COEFFICIENTS AND THE SLOPE ESTIMATES
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The limiting distribution of the null distribution of any correlation coefficient can be used
to determine the limiting distribution of the corresponding estimate of the slope or slopes in linear
regression.   As in the earlier sections let β  represent the slope and β (H)  the regression
parameter for joint distribution H.  Also let r be a correlation coefficient.  The idea is to expand
r( X,Y − βX)  as a Taylor series in β  about β (H) , replace the random variable (X,Y) by the

sample vectors (x,y) , and for large n , evaluate this equation at  the r estimate of the slope, say

at 
ˆ β ; then,  multiple by the square root of  n and use the limiting distribution of r and the Taylor

series to relate the limiting distribution of the correlation coefficient  to the slope estimate.    The
truncated Taylor series is

r( X,Y − βX) ≅ r(X ,Y − β(H )X) +
d
dβ

r(X ,Y − Xβ ) β =β (H ) (β −β (H))                (6)

In order to show the validity of the method, the case where r is Pearson's correlation and (X,Y)
is bivariate normal will be used to show that the standard result is obtained.  The notation of
section 3 is used.

The derivative in equation (6) is obtained by differentiating the quantity that is given just

below  equation (1).  The result is −σ1σ2
2 (1 −ρ 2) σ res

3

 and this evaluated at  β =
β (H) ≡ σ2ρ σ1  gives  −σ1 (σ 2 1 − ρ 2 ).  For the Bivariate Normal distribution X and
Y − β (H)X  are independent random variables so that for a random sample the asymptotic null
distribution of Pearson's r is needed.  By theorem 4.2.6 in Anderson (1958) , for large n,  r n
is approximately N(0,1).  The usual least squares estimate of  the slope parameter, 

ˆ β , is
obtained by replacing the random variables X and Y − βX  by data vectors in the lefthand side
of equation (6) , setting the result equal to 0, and solving for β .  Equation (6) holds

asymptotically when data vectors replace random variables and β  is evaluate at 
ˆ β , and  the

asymptotic connection between the null distribution of r and 
ˆ β  is obtained by multiplying the

result by n .  For simplicity n rather than n-3 is used.  The result is that
0 ≅ n r(x, y − x σ2ρ σ1 ) − nσ1( ˆ β − σ2ρ σ1 ) / (σ 2 1 − ρ2 ) .  Because the first term has an

approximate N(0,1)  distribution, so does the second term.  This result can be written as 
ˆ β  has

an approximate 
N(β(H),

σ2
2 (1 − ρ2 )

nσ1
2 )

 distribution.
Note that in the classical simple linear regression case with x fixed and σ

2
 the residual variance,

σ 2 = σ 2
2(1− ρ 2)  and nσ1

2 ≅ (x i − x )2∑ .  With these substitutions  
ˆ β  has an approximate

N(β,
σ 2

(x i − x )2∑
)
 distribution; that is, the standard result.
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This technique can be used to connect the limiting null distribution of any correlation coefficient
to the limiting distribution of the slope estimator.  As shown above, the quantities necessary to
complete the calculation are the population correlation coefficient of X with Y-β X, its
derivative with respect to β , and the asymptotic distribution øf the correlation coefficient for
uncorrelated data; that is, a random sample of (X, Y-β X).  The correlation coefficient rg has

the same population value for the Cauchy and Normal distributions, and so the only difference in
the asymptotic distribution of the slope estimator would be if there were a difference in the
limiting distribution of rg on uncorrelated data.

Since the limiting distributions of Spearman's and Kendall's correlation coefficients are
known, this section shows a simple way to determine the asymptotic distributions of the
corresponding slope estimators in a simple linear regression.  Now, however,  the above
technique is used to compute the limiting distribution of the rg estimate of the slope for the

Normal distribution and then to compare the asymptotic standard deviation to the classical case.
It is done only for the standarized bivariate Normal.  For this case, the derivative ( see just

before equation (2)) evaluated at β (H)  is −2 (π 1 − ρ2 ) .  Since in Gideon et al. (1989),
nrg  (null case) goes to a N(0, 1) distribution, the final result is that the rg estimate of the

slope, 
ˆ β g , has an approximate (here, β (H) = ρ )  N(ρ, π2 (1 − ρ2 ) 4n)  distribution.  Thus, the

ratio of the asymptotic standard deviation between the r and rg slope estimators is
π 1 − ρ2

2 n
1 − ρ2

n

=
π
2

= 1. 57.

Since Kendall's τ  has the same value of the population correlation coefficient on the Normal
distribution as rg does, and it is known that τ n , null case, is approximately   N(0,4 9)

distributed, by the method above, the τ  estimate of the slope, 
ˆ β τ , has a asymptotic variance of

4/9 of π
2 (1 − ρ2) 4 n.  Hence, the ratio of the asymptotic standard deviations of τ  to r for the

Normal distribution is 4 9 = 2 3 of π 2 or about 1.047.  This result , of course, has been
obtained by other means, but for rg there are no other ways to obtain asymptotic results.  This

shows the generality of the method.  In addition, the general ideas of this section can be easily
applied to all correlation coefficients to connect them to regression results.

Two points should be made clear.  One is that, because τ  and rg have the same

population values for the Normal distribution, the ratio of their asymptotic standard deviations in
estimating the slope depends only on the asymptotic null distributions of these correlation
coefficients.  The second point can be illustrated with Spearman's correlation coefficient, say, rs.
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Because it has a different population value on the Normal distribution than τ  and rg does, its

derivative term in equation (6) needs to be computed.  Then using that result with the asymptotic
null distribution of rs ,  its limiting distribution for its slope estimator can be obtained.  Note that

this asymptotic distribution of the slope estimate is obtained without an explicit expression for
this estimator of the slope.

10. CONCLUSION
It has been shown that the Greatest Deviation correlation coefficient  can be used to

determine the true slope β  in a simple linear regression by making random variables X and Y -
β X  rg-uncorrelated as in equation (2).  This result is apparently true for all distributions (X, Y-
β X) that have the symmetry property (4) which is the basis for the definition of rg in equation
(3).  Since the bivariate Cauchy distribution has this symmetry property, rg even works for

distributions without any finite moments.  The relationship of the correlation parameter ρ  of
both the bivariate Cauchy and Normal distributions are related in the same manner to rg; that is,
ρ = sin (πrg 2) .  Now  ρ  is interpretable as the cosine of the angle between X and Y and
ρ = cos(θ) = sin (.5π − θ ) = sin (. 5πrg)  implies that
                      θ =. 5π(1 − rg )  or rg = 1 − 2θ π                                     (7)

Rummel (1991) first noticed this result.  Thus, rg is linearly related to the angle between X and
Y.  From Figure 1 it can be seen that (1-rg)/8 is a statistical distance between X and Y and a
perfect postive relationship; that is, (1-rg)/8 is the volume in the first and fourth quadrants
between the lines y=x and y= ρ x.  Now  4π (1-rg)/8 = .5π (1-rg)=θ  so that  multiplication by
4π  converts this statistical distance to the angle between X and Y.  Hence, rg gives a simple

connection between the angle between two jointly distributed random variables and a statistical

distance in a linear fashion.  Note that if θ =
0,π 4 ,π 2, 3π

4, π( ) , ρ =(1, .7071, 0, -.7071, -
1), rg=(1, .5, 0, -.5, -1), and (1-rg)/8 is (0, 1/16, 1/8, 3/16, 1/4).  In the sampling estimation of

β , the calculation of both the rg estimate of β  and the value of (1-rg)/8 on 
X ,Y − ˆ β X( ) where

ˆ β  is the classical least squares estimate  gives valuable insight into the quality of the data with
respect to elliptical symmetry and outliers.

The results of Section 9  allow a simple and general asymptotic connection between the
null distribution of a correlation coefficient and its corresponding slope estimator.

Important equivariant properties are given in Rousseeuw and Leroy (1987) for
regression techniques.  Of these, it is easily seen that all correlation coefficient regression
techniques are regression and scale equivariant because of standard properties of correlation
coefficients.  However, rg is not affine equivariant because it is a nonlinear technique.
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