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Summary. For abivariate random variable (X, Y), agenerd definition of a dope parameter is
given for the smplelinear regresson modd. A regresson equation is defined for a
nonparametric correlation coefficient based on greatest deviations such that the dope parameter
is obtained when the equation is solved. This result is explored geometricaly and then isused to
rel ate the asymptotic distribution of the sampling estimate of the dope to the asymptatic
digtribution of the correlaion coefficient. The bivariate norma and Cauchy digtributions are
used to illustrate the principles and the general concepts apply to any correlation coefficient.

1. INTRODUCTION

If (X,Y) isajointly continuous random variable, then if the appropriate moments exi<,
E(Y|X=x) isdefined asthe regresson lineof Y on X. The bivariate normd digribution with
parameters (M, M, $1,52.T) wherethe subscripts 1 and 2 arefor X and Y, respectively, has
theform ECIX=X) =, +(5,/S)r (X- M) Textbooks, such as Ros3(1988) use the
bivariate norma digtribution to show that the least squares criterion recoversthis regresson
equation. In fact, Ross states that "the best linear predictor” in cases where the means,
variances, and corrdation are known is given by choosing "a' and "b" to minimize
E(Y- (a+bX))’. It isthe purpose of this article to show that there are other "best linear
predictors' such as the method in this article using the Greatest Deviation Correlation
Coefficient, rg (Gideon and Hollister (1987)), which recover this regression equation for the
bivariate norma distribution. Even further, the method presented here can recover the
theoretica regression line for the bivariate Cauchy digtribution after amore generd definition of
adope parameter is presented. A normd  distribution example will be given to illugtrate the
generd nature of the rg method, and then amore genera definition is given for aslope
parameter so that the technique can be used for the Cauchy didtribution. A generd framework
of regression based on random sampling with rg has been given in Gideon, Rummel, Li (1994)
and Gideon et d. (1993) and this paper gives some theoretica judtification for such work. The
underlying bad's, in using nonparametric correlation coefficient rg, seemsto be an equdizing of
the "distance" away from perfect positive and negative corrdaion and this will be seen by
studying the digtribution of (X,Y -bX) where b is the regression coefficient.



2. THE BIVARIATE NORMAL AND THE REGRESSION CRITERIA (MSSV)

In order to make the concepts clear, the sandardized bivariate normd digtribution is
used firgt; thus, X and Y have N(0,1) margind distributionsand I is the correlation parameter.
The theoretical regression lineis E(MX =%) =1 X gg thisis pictured in Figure 1 when ' >0.
Let f (XY) bethe bivariate density. Let Qj refer to the set of pointsin quadranti, i =1, 11, 111,
IV respectively, and P(Qj) = P((X,Y) isin Q). Itisknownthat P(Q1) = P(Q3) =

74+ %p ndithet HQ2) = RQa) = /4™ %p- Let

¥rx

A={(x,y):x3 0,0£y £rx}, sothat PA) = O¢F (X,y)dydx=(sin"'r)/2p

represents the probability of an observation falling in region A. Thisis shown in Rummd's
Dissertation (1991). InFigure 1, rgiswritten asr(GD) and its relationship to these bivariate

normd probabilitiesis shown. In Q1 and Q3 the volumes are split into two pieces about the

dotted regression line. The dashed lineisthey = x line, and the correlation is 0.6.

Congder the following criterion to fit aregresson line (y=bx) to the Sandardized
bivariate normd; pick b to equdize the "distances' which are redlly the volumes or probabilities
above and bddow the line. Clearly, from Figure 1 with the contour lines for T (XY) shown, it
can be seen that the probability of landing in the regions above or below each line are equa
and some restriction must be made. Let V1 and V4 be the probabilities above the line and
below the line within quadrants Q1 and Q4. First note that for b=r , V1=P(Q1) - P(A) =1/4
and V4=P(Q4) + P(A) = 1/4 so that this choice of b would satisfy the regression line criterion.

Now consider P =T +d where d may beaplus or minusincrement, and let Vi(d) pe
the probabilities, i=1and 4 asafunction of thisincrement. Let v be the probability of the region
{(xy)xx>0bXEYErX } it d et imilarly, for @ >0 where DX >T X Now for <0,
V1=1/4 +v and V4=1/4-v and likewise for d >0, V1=1/4 -v and VV4=1/4+v. For example, if
d=-r,b=0, y=pA), and V1=P(Q1)>P(Q4) =V4 since we are considering the case where
r>0, 1f d=1-1,0=1 v =pQqy)2 = ¥8+sn"r/4p<V, =3/8- 9n"'r/4p. py

arbitrary, 4(Y): the sum of squaresisvl2 +V =L/ 4+V) + (2 4- V) andit iS easy to see
that this sum of squaresis minimized when v=0, or d =0. Thus if this criterion of minimizing the
sum of squares of probabilities (MSSV, v for volume) to theright of a verticd line through the

center of the digtribution is used to determine a regression line, the correct line is chosen.
Because of the symmetry of the bivariate norma digtribution, if MSSV isused redricted to Q2

and Q3, the same result occurs. This result dso holds for the Cauchy digtribution asseenina
later section.



Inwhat follows, it will be shown that amethod of choosing aregression line with rg,

the Greatest Devidtion correlation coefficient, involves equating probabilities o that essentialy
rgisamodified MSSV estimation procedure for the dope parameter. The correlation

coefficient rg is computed by taking the difference between two supremums involving
probabilities; the first measures probability away from perfect negative corrdation and the

second measures probability away from perfect postive correlation (see equation (3), and this
concept will beillustrated after (3)). The rg ope parameter is the one that equaizesthis

"digance’. In the bivariate Normal and Cauchy cases this method will agree with the MSSV

idea because of ther dlipitca symmetry. However, for distributions with non-homogeneous
variance the rg method does not necessarily agree with MSSV but is close enough to be called

amodified MSSV. An example not presented here illugtrated the fact thet if the distribution of
(X,Y- bX) is symmetric with respect to a horizontd line in the case where

E(VX =) =2 +bX, e the rg selected the correct regression line. This suggeststhat rg
givesthe correct regresson linein dl casesin which the distribution of (X,Y- bX) IS symmetric
about ahorizontd lineif P isthe true parameter. These concepts will now be developed for rg
and the normd ditribution.

3. THE REGRESSION EQUATION FOR g

Let (X,Y) beabivariate random varigbleand I (X,Y) = E(X- EX)(Y - EY)/(s.S ),
the correlation parameter. With asimilar notation, rg(X,Y) isthe rg correlation parameter. For

the standardized bivariate normd, let ' (X,Y) =T, and it is shown in Gideon and Hollister

(1987) that
r,(X,Y)=2(sn""r)/p D

It is straight-forward to show that for any bivariate norma random variable
r(X,Y-bX)=(rs,- bs,)/s,. where

S =(Var(Y - bX))’2 = (s2 - 2brs,s, +b’s?)
r(XY - bX)=(r -b)/ @- 2or +b%)2 =1,
ry(X,Y - bX)=2(sn""r,)/p.

This paper gives atheoretical justification of fitting aregression line with rg and one of

* For the standardized case,

say. Thus,

the main ideas can now be shown. If (x,y) isan nx2 random sample from (X,Y), then solving
the equation Fg(xy- x0)=0for b givestherg estimate of the slope (Gideon et d, 1994).

Asthe sample goes to infinity, in the limit the equation becomes rg(X,Y - bX) =0. It isnow
shown that the unique solution is, for the Sandardized bivariate normd, b =r. Thedaivaive

of "o XY - DX ity respect to P is- 24/1- r 2/(pS 2_) whichis less than zero for dll



r’:1 Therefore, rg(X,Y - bX) is monotonic decreasing in b and the regression equation
has a unique solution. The solution to

r,(X,Y-bX)=0 (2
givestheequation 257 T5/P =0 \hichimpliesthat B =T - The next section will use
geometrica condderations to relate this result to the MSSV criterion.

4. MSSV, rg, AND THE BIVARIATE NORMAL

Let thejointly continuous random varigble (X,Y) have margind cumulative distribution
functions (cdf) F(x) and G(y) and joint cdf H(x,y). Let U=F(X) and V=G(Y), the probability
integral transformations, and
C(uv)=PU £ uV £v) =P(X £ F*(u),Y £G *(v)), for 0£u,v £1, the Copulafunction .
In Gideon and Hollister (1987), it is shown that

r,(X,Y) = 2(%5’!81C(t,1- t) - Z&Jt%(t- C(t,1)) (3)

=2spH(F(1).G'(1- 1))- 2an(t- H(F (1), G (1)

The use of the population definition of rg in equation (3) will first beillustrated, as before, with
the standardized bivariate normal with corrdlation coefficient ' . Let F bethe cdf of aN(0,1)
random varigble. Then for thiscase F= G =F and for afixed tinthe (0,1) interva,
(F(®),G(1)=(F (),F*(t) and (F (1), G- 1)) =(F "(1).,F 'L- V). Becauseof
the symmetry of aN(0,1) random varigble, these two sets of pointsfor tin theinterval (0,1)
trace out lines through the origin with dopes +1 and -1, respectively. Figure 2 demongtrates
geometricdly the evauation of the supremums in equation (3) by showing the evauation for a
fixed t</2. Figure2agives® =-a =F '(t)and &, = F (L~ t). Then Figures 2b and 2c
show the regions where the cdf's are evaluated for two cases; 0 <P < jnocangb =1 >0
in 2b. The value of t was-1.28, the 10t percentile. Technically, X and (Y - Xb)/s

must be used to keep the parametric equations above as lineswith dopes 1.

In this section, volume rather than probability of eventsis used because the geometrica
view isbeing siressed. Let W,(1) be the volume over the infinite rectangle with corner a
(a,a) open towards the northwest in Figures 2b and 2c. Let Wy(t) = H(F(1).G (- 1)),
the volume over the infinite rectangle with comer a (81:82)- At t=1/2, the corers of the
rectangles are at (0,0) and W,(1/2) = P(Q,) and W,(Y/2) = P(Qy). The geometricd view for
at>1/2 in shown in Figure 3. With this notation and for afixed b ,
ry(X,Y - bX) =2sup W, (t) - 2sup W, (t). _ . _

t t Because of the unimoda and dlipticaly symmetric

nature of the bivariate normad distribution and geometricad consderations, it is seen that the two



functions Wa(t) and Wa(0) involved in the two supremums in the evauation of rg(X,Y - bX)

will have their maximums achieved a t=1/2. Since F W2 = O, the coordinates of points
where the maximums are achieved are (0,0) in Figures2 and 3. Thismeansthat in Figure 2b,
ry(X,Y - rX)=2P(Q,)- 2P(Q,) =0.

For the casein Figure 2¢ (0<b <I') it is dear that in comparing Wa(t) to Wa (V) thyy
W (1) will achieve agreater maximum. The result is that
g(X.Y - bX) =2P(Q)) - 2P(Q) =28n "1, /P Eqplier work showed thet
Fg(X,Y - DX)=0 oy for b =T pecauseinthiscase X @d Y - I'X geindependent
random variables so that equation (3) becomes (where G isthe marginal cdf of Y = T X),
r(X,Y - rX) = 29pt(L- 0)- 23 (t - ') = 2(}5* 1) - 2(J5- ¥}) =0

(X,Y-bX)=2@n""r,)/p thevaue

_ Z _

of "o st forP=0and- ((1' r)/2) “for =1, Theseare now interpreted as the
— —agn-1 —

difference between two volumes. For b=0,P(Q)- PQ)=sn"r Ip = ry(X.Y)/2 and for
b=1Vi- V, =-Y4+@En " r)/2p =sn ( JIL-r)2)p =r (X,Y- X)/2<0. The
latter result contains a trigonometric identity that can be proved by making the subgtitution
I =COSt. The quantity V1 is really messuring the "distance” (volume) of the proposed line
away from perfect negative corrdation and V4 the "distance" away from perfect pogtive

At the earlier examples of b =0 and b:1, in "o

correation. It should be made clear that V1 and V4 are volumesfor (X,Y) whereas "o above
refersto (X,Y -b X). When (X,Y) istransformed to (X,Y - b X)

the region above the Iiney:b X in Q1 gets sretched into al of Q1 and the region below the line
y:b x inQ1and Q4 (for ' >0 only) gets squeezed into Q4. Thus, the volumes (V1,V4) for
(X,Y) go to probahilities (P(Q1), P(Q4)) for (X,Y - b X). Since V1 -V4 =rg(X,Y)/2< 0, the
proposed dope gives aregression line that is ill too far away from perfect positive correlation.
The concept of "distance” away from perfect positive and negative correlaion can be made
clear by considering two absolutely continuous random variables (X,Y). First let X=Y so that

there is perfect pogtive corrdaion. Then by usng formula (3) it is easily seen that

up Ctl-t)=12 . :
OEtEL andthat C(t,t)=t sothat C(t,1-t) which measures distance from perfect

negative correlation is maximum at 1/2 whereast - C(t,t) =0 for al t and distance from perfect
positive correlation is 0, aminimum. It follows that rg(X,X)=1. Second, let X =-Y so that
there is perfect negative correlation. In this case C(t,1-t) = O for dl t, and distance from perfect
negative corrdaion isO. Itisesasly shown that

up|t - C(t,t =max§su t,sup(1-t U max(1 2,1/2) =1/2
‘p[ 9] Bii> il )g ( ) , and the diistance from perfect

positive correlation isamaximum. It now followsthet rg(X,-X)=2(0 - 1/2) = -1.



rg(X’Y -bX) measures twice the

Thus, in aregresson interpretation, the magnitude of
volume difference from the true regression line, and this difference gives the excess distance
between perfect positive and negative corrdation.  If this differenceis negetive, b mugt
decrease but if the difference is pogtive b mugt incresse to obtain the true P . 1f
rg(X’Y i b><):Othen Vi- Vu=0adamssv parameter has been obtained. Thishasa
direct analogous interpretation in sampling using rg in smple linear regression as given in Gideon
et a.(1994). For example, in Gideon and Hollister (1987), there was a Y MCA data set of 16
points, thus, in a point process, each point hasweight 1/16. Let (X,y) be this data, then
rg(x,y)=-3/8=2(3/16 - 6/16) = twice the "volume" difference from the true regression line.
For this data, the rg Slope and intercept estimates are -.6076923 and 13.77308, respectively,
S0 that the sampleregresson lineis y=13.77308- .6076923x andaP=0is-3/16 away,
volume-wise, from the rg regression line. A scatterplot of this data appearsin Gideon et d.
(1989). For b =0 the distance from aperfect negative regression is 3/16 whereas from perfect
positive regression it is 6/16, and this indicates that a negative dope (b= -.6076923) must be
used to balance the distances.

For abivariate normal distribution with location and scale parameters M1:S 1(M2,S 2) for
X(Y), thesolution of Ta (XY - BX)
In order to complete the regression, theintercept of the regresson is given and again thisis
based on the work in Gideon et d. (1992) and (1994). Now

E(YIX =x)=(, - rS,m/$,)+r'S,X/S; A location esimate using rgis the average of the
1/3 and 2/3 quantiles; call thisthe rg-mean. To complete the regression let "d' betherg-
mean(Y - rs,%/s,), and the g theoretical regression equationis 8 S, X/S1. Forthe
bivariate normal X and Y = T S2X/s, areindependentand Y - 'S 2X/'S1 isdistributed as a
N(m, - rs,m/s,,s rz%)' This digtribution is symmetric about its mean and hence, the average
of the 1/3 and 2/3th quantiles will be the point of symmetry. In conclusion for the bivariate
normd, the rg process recovers the correct regresson equation. Thisisimportant becauseit is

=0 will beuniquea P =T S,/S1. the correct parameter.

necessary to show that for the and ogous sampling process the estimated regression line will in

the limit converge to the correct equation.
5. SUMMARY OF MSSV AND rg METHOD

Before proceeding with the Cauchy example in which the more generd features of the
g process become gpparent, asummary is given which will set the stage for the other

examples. Therg process for the Slope b invalved determi ning b 5 that two volumes were
the same (the differences between two supremums). 1t was seen that equaizing the volumes on
one side of avertical linethrough (M 1M2) say L, could be thought of as choosing P so that the
sum of sguares of the volumes above and below the regresson line was minimized. For the



bivariate norma, for 0 £1 £12 inthe Supremums, the comparison was on one side of L and

for t>1/2 on the other side. By the symmetry of the distribution only one side needed to be
considered, and then rqwas aMSSV method. In other examplesthe joint distribution could

have asymmetry property that allows the rg method to produce the true regression line, but it
need not have the dliptical symmetry property like the norma about aline L.

In the limit, the population regression of leest squares and rg are probably the same for
many digtributions, but in sampling estimation problems, volumes get replaced by relative
frequency counts, and significant differences can occur. The overdl minimization process
remains the same for both least squares and rg, but because a point can move to a distant outlier
without changing the volume of aregion, rgis arobust regression as opposed to least squares

for which a distant outlier will destroy its good estimation properties. When this happens, the
absolute value of rg can be large on (X,Y- bX) where b isthe least suares estimate and
Pearson's correlation coefficient is zero.

Therg value of the dope b occurred for a P for which
H(F'(1),G'(1- 1)) =t- H(F'(1),G (1)) (4)
wastruefor al O£t £1 For this P, the digribution G is symmetric about Mx = E(YIX = ).
Fort< 12 lety>0 such that M+ Y= G (- 1) gng M- V=G (). Then thejoint
distribution H of (X,Y-D X) where ECYIX =X) =a +bx = I oigiey
HOGY +m,) +H X, - y) = H(X¥): and dividing by the right-hand side the following
condition on the conditiond digtribution is obtained.
HOGY +m)/HOG¥) + HX M, - W)/ H(X¥) =1 7his sy tht the conditional distribution
of (Y - bX|X =x) is symmetric about ""x. Thusit appears that solving equation (2) will give the
true P if the distribution of (X,Y) hasthe symmetry property that isthe basis of the definition of
rg, mainly that there existsa P such that the distribution of (XY~ BX) with H, F, G, the odf's,
satisfiesequation (5).  Thisisformdized in the next section.
6. SLOPE PARAMETER AND rg
In this section a generd definition of a dope parameter for aclass of bivariate symmetric
digtributions is given and then equation (2) for the rg regression method is shown to yield this
parameter.

Definition 1. For certain classes of symmetric continuous bivariate digtributions, let H(x,y) be
the cumulative distribution function (cdf). For values of b, condder the family of distributions

(X, Y- b X). Ifab can befound such that the distribution of (X,Y - b X) isdlipticaly
symmetric about aline of zero dope, then the value of this b , say b (H), is said to be the dope

parameter, and H belongs to the class H of continuous regression symmetric distributions,



Note that this defintion gives a dope parameter for the bivariate regresson models for
both the Normd and Cauchy didtributions; it agrees with the expectation definition for the
norma case and extends the regresson modd definition to the Cauchy distribution where
expectations do not exist. This defintion could be extended to include distributions that are not
dlipticaly symmetric, but, instead, are only symmetric for each point on ahorizontd line. This
then would include nonhomogenous variance models and the classica regresson mode as
explained below.

For the standard univariate regresson modd where x is assumed fixed, say, Y =
a +bx+ e and e hasasymmetric distribution about zero, then for each fixed x, the

disributionof Y - bx =a + eissymmetric about a . Thus, for dl X, the conditional
digtributions (X, Y - bX) are symmetric about the zero Sope line centered & a and b isthe

dope parameter even if the expectation of € does not exist.

It isnow shown for class H that the rg MSSV method gives the true dope parameter.
Let H* bein H for the bivariate random variable (X,Y), and let F* and G* be the margind
cdf'sof X and Y, respectively. Let H, F, and G be the corresponding cdf's for the transformed
vaiables (X,Y - b (H*)* X), where G hasapoint of symmetry at its median and without
loss of generdity, let this point be zero. From the definition of b (H*) and H , following
properties hold
@ H(u,-v)=H(u,¥)- H(u,v)° F(u)- H(u,v),

(b) G(v) =1- G(- V), whichimpliesfor O<t<1, G *(1- t)=- G'(t).

These properties (8) and (b) imply that equation (4) is satisfied at b (H*) which means
that the greatest deviation correlation coefficient regresson method has the correct population
vaue for the dope. The proof is asfollows. from (a) and (b) and for dl O<t<1,

H(F*(t),G*(L- 1)) =H(F(t),- G(1))
=H(F(t),¥)- H(F*(1),G™ (1))
=FF(t)- H(F™(1).G™ (1)
=t- H(F'(t),G(t)).
Thus the supremums in equetion (3) areidentica at b = b (H*) and
r,(X,Y-b(H*)*X)=0.

An application of this result would be thet the rg method would give the correct slope
parameter for dl bivariate t digtributions including the case of one degree of freedom, the
bivariate Cauchy.

7. THE BIVARIATE CAUCHY



The following example with the bivariate Cauchy distribution shows that the rg method is
goplicable for dl digributions; not just those with finite first and second moments. The recent
book by Hutchinson and Lai (1992) Statesthat the bivariate Cauchy ... isof limited interest as
it has no correlation parameter”; it may be that snce the usud conditiona expectation

E(YIX = %) goes not exist, no one has known how to recover the regression line ¥ = ' X which
does exigt if definition 1. isgpplied. Hutchinson and La define the bivariate t and this dengty
with one degree of freedom should be what is defined to be the bivariate Cauchy with
correlation parameter I ;

-3/2
h(xy) = [1+(x* - 2rxy +y*)/@- r )]/ (@p1- 1) (5)
They defined the bivariate Cauchy to be this density with I =0, but it should be defined asin
(5) and the following will show thet the rg method recovers the correct regression linein exactly

the same geometrical manner asthe bivariate norma case.
If the contour lines for this density are drawn for various ', they take the same dlliptical
pattern as do the contour lines for the standardized bivariate normal. For example, let u=x and

_ 2 _ 2, .2Y92
V(Y- 10/YT 17 e Uy = (L4 u® +v7)  2p, the bivariate Cauchy with T =0,
and the contours are circular and centered at the origin. The cdf of this Sandardized density is
H(u,v) :ﬂ4+Em'lu+tan'lv+tan'l(1v/1/1+u2+v2)]/2p _ o
. Themargind or univariate

Cauchy isgivenby H(U¥) = H(¥,u) =12+ (tan " u)/p. Then theinverse of the univariate
Cauchyis F (1) =u=tan(p(t - ¥2)), and using thisit is relatively essy to show that the cdf
of (U,V) stisfies the symmetry condition of rgin equation (4) and hence, ry(U.V) = 0. It
seems to be leer that just like the bivariate normal if * ~ 0 To(XY) ™ 0y

rg(X,(Y- r X)/ ‘/ﬁ) =0 and the rg method recovers the regression equation for the
(generdlized, " * O) bivariate Cauchy distribution. This also meens that the rg method can
edimate the dope in a reasonable manner when sampling is done with the bivariate Cauchy
dengty in equation (5) using al thedata. Previoudy existing estimation techniques would be
unstable asthey depend on moments existing, and current robust methods would try to delete
“outliers’ to stebilize the process. Some simulations were run to verify this and indeed the rg
method was up 10,000 times more efficient than least squares.

The intercept in this example is zero so no cdulation for it is necessary. If, however, the
bivariate Cauchy was shifted, the rg-mean intercept method would recover the center of the
distribution by averaging the one-third and two-thirds quantiles because of the symmetry of the
Cauchy digtribution.



In exactly the same manner as for the bivariate normd didtribution, the vaue of
rg(X.Y) can be obtained from equation (3) for any I because the bivariate Cauchy has the
same dliptical symmetry properties and the supremums are achieved a t = 1/2. Thus,
rs (%)= 2[P(Q) - P(Q@)]=2P(Q) - P The probatiities PQ) and P(Q:) are
obtained by integrating density (6) over the first and fourth quadrants. The double integra for

P(Q) s reduced to adgngle mtegrd by changing to polar coordinates (r.d) and integrating out

PQ) = (‘/1 r /Zp)dl 2dnqcosq) ‘dg
ther to get . Theintegra over the fourth
-B
quadrant, Q) , Isthe same except the limits of integration are from /2 to0. The
substitution of SN 24 for 29N gCosq glows the use of astandard integration formula (#195
page 89 in Burington (1973)) involving the arctan function. In evauating the result of the

-B
integration for PQ) a 72 care must be taken because the principa vaue is not the correct
A [ N1
result; use P - tan " (Y(1+r)/(L- r)ten p/4). Thefind results with another identity are
PQ) =ptan™J(L+r)/(L- 1) =sn"'r/2p + 4,
PQ,)=2)- p'tant/@+r)/(L- 1) =-sn"'r/2p +/4.
For the bivariate Cauchy distribution
r,(X,Y)=2(P(Q) - P(Q,)) =@ p)tan *y(@L+r)/(1- r) - 1=(2p)dn”'r ,and " enters
into the rg correlation of the bivariate Cauchy identical to the bivariate normdl. Itisaso true

that region A as defined for the bivariate norma has the same value and interpretetion.

tan'lr

P(A) = (J - r /2p) dl 2r sng cosq) 'dg = 1y (X, Y)/4

ag@F (X)) 4= (1+ ((2sn'r)/p))! 4
8. DISTRIBUTION FREE

Let (X,Y) be bivariate norma and let S have the didtribution of the square root of an
independent Chi-square random vaiable with N degrees of freedom divided by its degrees of

freedom. Then (X/S)Y/S) = (X*,Y*) isabivariaet andif N=1, itisbivariate Cauchy. The
division by Sonly changes the scale factor of (X,Y) and not the distribution of correlation rg.

Thusrg(X, Y-P X) = 0impliesrg(x*, Y*-P X*) = 0 and the rg method gives the same resuilts
for B over the dass (X.Y), (X*,Y*), n=12* . Thismeansthat the rg confidence interva
for B in Gideon et . (1994) isvdid for data from any of these bivariate distributions.

9. THE ASYMPTOTIC RELATIONSHIP BETWEEN THE DISTRIBUTIONS OF THE
CORRELATION COEFFICIENTS AND THE SLOPE ESTIMATES

10



Thelimiting digribution of the null distribution of any correlation coefficient can be used
to determine the limiting ditribution of the corresponding estimate of the dope or dopesin linear
regresson. Asinthe earlier sections let b represent the dope and b(H) the regresson
parameter for joint distribution H. Also let r be a corrdation coefficient. Theideaisto expand
r(XY- bX) asaTaylor seriesin b about b (H), replace the random variable (X,Y) by the
sample vectors (x.y) , and for large n, evauate thisequation a ther estimate of the dope, say

at b then, multiple by the square root of n and use the limiting distribution of r and the Taylor
seriesto reate the limiting distribution of the correlation coefficient to the dope estimate.  The
truncated Taylor seriesis

r(XY- bX) @(X,Y- b(H)X)+%r(X,Y- XD, -y 4y (0 - B (H)) (6)

In order to show the vdidity of the method, the case wherer is Pearson's correlation and (X,Y)
is bivariate normal will be used to show that the standard result is obtained. The notation of
section 3isused.

The derivative in equation (6) is obtained by differentiating the quantity thet is givenjust
below equation (1). Theresultis™ St° 2@ /s - and thisevduated a P =
b(H)® s,r/s; gives =S (541 17) For the Bivariate Normal distribution X and
Y-b(H)X ge independent random variables so that for arandom sample the asympitotic null
distribution of Pearson'sr is needed. By theorem 4.2.6 in Anderson (1958) , for largen, T 1/ﬁ

is gpproximately N(0,1). Theusud least squares estimate of the dope parameter, b is
obtained by replacing the random variables X and Y - bX by data vectors in the lefthand side
of equation (6) , setting the result equd to 0, and solving for b Equation (6) holds
asymptotically when deta vectors replace random variables and b isevauaea P ,and the

asympitotic connection between the null distribution of r and b is obtained by multiplying the

result by ‘/ﬁ. For amplicity n rather than n-3isused. Theresult isthat

0@/nr(xy- xs [s,)- Jns,(b- s /Sl)/(sﬂ/ﬁ). Because the first term has an

approximate N(0,1) distribution, so does the second term. This result can be written as b has
Nb(H), 22251,

an gpproximate NS: distribution.

Note that in the classcd smple linear regresson case with x fixed and S ? the residud variance,

s*=s3(1- 1) g ns @ (%, - )_()2. With these subgtitutions b has an approximate

2
N(b, os—_z)
a (%= X)™" gigribution; that is, the standard resuit



This technique can be usad to connect the limiting null digtribution of any correlation coefficient
to the limiting digtribution of the dope estimator. As shown above, the quantities necessary to
complete the calculation are the population correlaion coefficient of X with Y- b X, its
derivative with respect to b , ad the asymptotic distribution ef the correlation coefficient for
uncorrelated data; that is, arandom sample of (X, Y- b X). The correlation coefficient rg has
the same population vaue for the Cauchy and Normal digtributions, and so the only differencein
the asymptotic distribution of the dope estimator would be if there were a differencein the
limiting distribution of rg on uncorrelated data.

Since the limiting distributions of Spearman's and Kendal's correlation coefficients are
known, this section shows asmple way to determine the asymptotic distributions of the
corresponding dope estimatorsin asmple linear regresson. Now, however, the above
technique is used to compute the limiting distribution of the rg estimate of the slope for the
Norma digtribution and then to compare the asymptotic standard deviation to the classica case.
It is done only for the standarized bivariate Norma. For this case, the derivative ( see just

before equation (2)) evaluated a P (H) is” 2(PV1- 1) Sincein Gideon et 4. (1989),
s (null case) goesto aN(0, 1) ditribution, thefinal resuit isthat the rg estimate of the

dope, bg, has an approximate (here, P (H) =T ) N(r P*(L- 12)/4n) Gigribution. Thus, the
ratio of the asymptotic standard deviation between the r and rg slope estimatorsis

SinceKendal'st hasthe same value of the population correlaion coefficient on the Normal
distribution as rg does, and it is known that t Jn , null case, isgpproximatdy  N(0,4/9)

distributed, by the method above, the U estimate of the Sope, b, , has a asymptotic variance of
2 2
49.0f P*(L- 1 )/4N Hence the ratio of the asymptotic standard deviations of T to r for the

Normd digtribution is ¥ 49=2/3 of P/20r about 1.047. This resuilt , Of course, has been
obtained by other means, but for rq there are no other ways to obtain asymptotic results. This
shows the generdity of the method. In addition, the generd ideas of this section can be easily
gpplied to dl correlation coefficients to connect them to regression results.

Two points should be made clear. Oneisthat, becauset and rg have the same
population vaues for the Normal digtribution, the ratio of their asymptotic standard deviationsin

estimating the dope depends only on the asymptotic null digtributions of these correlation
coefficients. The second point can beillustrated with Spearman's correlation coefficient, say, rs.

12
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Because it has a different population vaue on the Norma ditribution than T and rgdoes, its

derivative term in equation (6) needs to be computed. Then using that result with the asymptotic
null digribution of rg, itslimiting distribution for its dope estimator can be obtained. Note that
this asymptotic digtribution of the dope estimate is obtained without an explicit expression for
this estimator of the dope.

10. CONCLUSION

It has been shown that the Greatest Deviation correlation coefficient can be used to
determine the true dope b in agmple linear regresson by making random variables X and Y -
b x rgruncorrelated asin equation (2). Thisresult is apparently true for al distributions (X, Y-
b X) that have the symmetry property (4) which isthe basis for the definition of rg in equation
(3). Sincethe bivariate Cauichy digtribution has this symmetry property, rg even works for

distributions without any finite moments. The rlationship of the corrdation parameter I of
both the bivariate Cauchy and Normal distributions are related in the same manner to rg; that is,

r=an (prg/Z)l Now ' isinterpretable asthe cosine of the angle between X and Y and
r =cog(q) =dn (.5p - q)=9n(.5pr,) impliesthat

q=.5p(1-ry)orr,=1- 29/p (7)
Rummel (1991) first noticed thisresult. Thus, rgislinearly related to the angle between X and
Y. From Figure 1 it can be seen that (1-rg)/8 isastatistical distance between X and Y and a
perfect postive relationship; that is, (1-rg)/8 is the volume in the first and fourth quadrants
between the linesy=x andy=" x. Now 4P (L-rg)/8 =.5P (1-rg=9 sotha multiplication by
4P convertsthis getidtica distance to the angle between X and Y. Hence, rg givesasmple
connection between the angle between two jointly distributed random variables and a satistica

P/ B/ 3D
distancein alinear fashion. Notethat if d :(O’ /4 /2 /4 p) , T =(1,.7071, 0, -.7071, -
1), rg=(1, .5, 0, -.5, -1), and (1-rg)/8 is (0, 1/16, 1/8, 3/16, 1/4). In the sampling estimation of

b the calculation of both the rg eti b (X’Y' bx)
: gedimateof M and the value of (1-rg)/8 on where
b isthe dassical lesst uares estimate gives vauable ingght into the qudity of the datawith
respect to dliptica symmetry and outliers.

The results of Section 9 adlow a smple and generd asymptotic connection between the
null distribution of a correlation coefficient and its corresponding dope estimator.

Important equivariant properties are given in Rousseeuw and Leroy (1987) for
regression techniques. Of these, it is easily seen that dl correlation coefficient regresson
techniques are regression and scale equivariant because of standard properties of correlation
coefficients. However, rgis not affine equivariant because it is anonlinear technique.
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