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NORMS, ORDER STATISTICS, AND VARIATION ESTIMATES

Classically a norm in statistics is essentially the same as a norm in general
mathematical analysis.  In this work a norm is developed in a completely different, but
much more general way, namely via the correlation coefficient.

The author’s previous work on location and scale estimates from correlation
coefficients will be combined to produce a generalized alternative to the classical norm,
called an order norm, as it is based on order statistics.  This norm does agree with the
classical norm on certain regular data vectors, but this new norm, in contrast to the
classical norm, is robust on the unchanged data.  Many current robust methods begin with
data adjustments to eliminate outlier influence.  This method requires no such
manipulation.

This paper develops the order norm, shows it is robust for a particular correlation
coefficient and that it agrees with the classical norm on certain symmetric data.   It
illustrates several important properties of the norm and it is shown how to produce a new
inner product, a new covariance, and yet another correlation coefficient which leads to
further avenues of research.  An elaborate example on a classification problem using
satellite data is given.  The illustrations use the Greatest Deviation correlation coefficient
because this nonparametric correlation coefficient makes apparent the generality of the
method and gives a robust norm.  Any of the correlation coefficients discussed in Gideon
(G0, 2000) could be subjected to the same treatment and their particular properties
discussed.

In order to develop the material, the connection between the usual least squares
estimate of variation, 2σ , and the order statistic least squares estimate of σ is explained.

1. Preliminaries: Notation.

Random Variable Z with cumulative distribution function F(z).

R.V. X with distribution function F 





 −

σ
µx

 of the continuous kind.

The standardized R.V. 
σ

µ−
=

X
Z , and the random sample nXXX ,,, 21 L .

The order statistics )()2()1( ,,, nXXX L  and the column vector )',,,( )()2()1( n
o xxxx L= .

The order statistic transformation )()( ii ZX σµ +=  and expectation

)()( )()( ii ZEXE σµ += , i=1,2,…n.     In order to condense notation let k denote a set of
constants that are sometimes centered symmetrically about zero. For now let

.,2,1),( )( niZEk ii L==   When  a norm based on order statistics is introduced a different
k will be defined.

Before proceeding we need a result contained in Randles and Wolfe problem 1.2.4.
Introduction to the Theory of Nonparametrics.
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Let ∑ −−= .)(),( 2
)( ii kxD σµσµ Then it is easy to show from least squares that the

minimum of D with respect to µ  and σ is xo =µ̂  and 
∑

∑= 2

)(ˆ
i

ii
o k

xk
σ  where 0

1

=∑
=

n

i
ik .

It follows that µµ =)ˆ( oE  and .)ˆ( σσ =oE   The subscript o signifies an order statistic
estimate.

These estimates of location and scale were shown to be fully efficient for a
normal population by Lloyd (1952).  This idea is discussed in David (1970) in the
location and scale chapter.  None of these authors looked at the estimation through the
use of correlation coefficients as is done in this paper.
Let pr  represent Pearson’s correlation coefficient, then with vector notation

∑ ∑

∑
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= =
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yxr

ii
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i
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p .  Let ),,,( 21
'

nkkkk L=  where ik  is the expectation

of the ith
  order statistic of the standardized random variable.  In what follows 0=k

because ∑ = 0ik , and then with k as an argument in pr  the correlation formula
simplifies.

Proposition 0: 0
1

=∑
=

n

i
ik

Proof: By definition, 
σ

µ
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µ

σ

µ nXEnXEXE
k iii

n

i
i

−
=

−
=
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2. Relationships between two least squares estimates of variability

Proposition 1:  Pearson’s correlation coefficient gives the order statistic estimate oσ̂ .

This formulation is important because other correlation coefficients can be used in the
same manner to obtain an estimate of σ .  Let pr  be Pearson’s correlation coefficient,

then because ∑ = 0ik , 0)~,( =− kxkr o
p σ  implies o

i
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∑

∑
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Proof:  Let us carry out the least squares regression of ox on k  or in model form
.,,2,1,)( nikx iii L=++= εσµ   First note that because ii kXE σµ +=)( )( ,  0)( =iE ε

which is the usual regression assumption.  Of course, however, the epsilons are not
independent and identically distributed.  The least squares regression estimates were
given by the minimum of ),( σµD above. So we use  the regression notation
SSX = SSR + SSE, total corrected sum of squares equals regression sum of squares plus
error sum of squares.  One figure with four parts is given to illustrate this regression.  The
data ox  and ox)(−  are each regressed on k , normal quantiles.  The data is N(0,1).  Parts

c and d of the Figure 1 lets kk= (-2.5,-1.5,-0.5,0.5,1.5,2.5) and regresses   ox and  ox)(−
on kk.  The fits given are from the Greatest Deviation correlation coefficient, and least
squares.    This figure also helps in the understanding of later Propositions.  Table 0 gives
details of the fits along with the Pearson correlation coefficient fit; that is, least squares.
The location and scale parts of the order norm as defined later are given as well as the
Norm and the to be defined Order Norm This is the regression with kk as the horizontal
axis variable. The Proposition 2 statement is for Least Squares or the Pearson fit.
                                    Table 0: Statistics for the regression plots

        konx o      konx   )( 0−        on kkxo kkonx o   )(−
int slope int slope int slope int slope

GD 0.2034 0.3932 -0.2034 0.3932 0.2052 0.1700 -0.2052 0.1700
LS or P 0.2622 0.5840 -0.2622 0.5840 0.2622 0.2803 -0.2622 0.2803
   For this x the norm is 1.39151 and the Order Norms are 0.87108(GD), 1.3369(P)
For completeness the x vector is given to five places: (-0.46387,-0.0084136,0.13033,
0.27001,0.45019,1.19520)
SSX = ∑ ∑ −=− 22

)( )()( xxxx ii and so SSX/(n-1)  = 2
LSσ is the usual least square

estimate of 2σ .
Now the regression line values are ioi kxx σ̂ˆ )( +=  and so SSR =

∑ ∑∑ ==− )(
222

)( ˆˆ)ˆ( iioioi xkkxx σσ .

Finally, SSE = ∑ ∑ ∑ −−=−−=− 2
)(

2
)(

2
)()( )ˆ()ˆˆ()ˆ( ioiiiii kxxkxxx σσµ .  Thus,

111 −
+

−
=

− n
SSE

n
SSR

n
SSX

gives 
11

ˆ
2

22

−
+

−
= ∑

n
SSE

n

k i
oLS σσ .

For the ox  on kk Pearson regression in Table 0, ∑ = 5.172
ik  and

SSX = SSR + SSE   or ∑ ∑ ∑ −+=− 2
)()(

222 )ˆ(ˆ)( iiioi xxkxx σ and with the data
1.52369 = (0.28031)2 *17.5 + 0.14865 = 1.37504 + 0.14865 and dividing by 5,

2ˆ LSσ = 0.30474 = 0.27501 + 0.02973.

For the ox  on expected values of the order statistics with the approximation used in Table
1 the ∑ = 1941.42

ik  and for SSX = SSR + SSE we have 1.52369 = (0.58402)2 *4.1941 +
0.09317 = 1.4305 + 0.09317.
Finally for this data the least squares estimate of σ is 55203.030474.0 = while the
order statistics estimates from Table 0 are 0.5840(LS) and 0.3932(GD).
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Proposition 3: If nikx ii ,,2,1,)( L=+= σµ ; that is, all 0=iε
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oLs σσσ

Proof: If nikx ii ,,2,1,)( L=+= σµ , then σ
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+
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∑

∑
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∑ =−−+= 0)( 2
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2
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n

k

n

k ii
oLS σσσ .

This Proposition will be used when a norm is introduced to show some norm properties.

It is instructive to have ∑
=

n

i
ik

1

2 for some values of n for the standardized normal

distribution.  From H.A. David (Order Statistics, page 65) or Blom, G. (1958) there is a

well known approximation for )
)4/1(
)8/3(

()( 1
)( +

−
Φ≅= −

n
i

ZEk ii , where Φ is the cdf of a

N(0,1) R.V.
Table 1 n 2 3 4 5 10
approx ∑ 2

ik 0.6949 1.5117 2.380 3.27 7.95

true 0.636 1.4323 2.300 3.195
n 20 40 50 75 100

approx 17.63 37.30 47.20 72.01 96.87
true

n 200 500 1000 5000 10000
approx 196.54 496.11 995.77 4995.008 9994.675
true

Because nZEZE
n

i

n

i
ii ==∑ ∑

= =1 1

2
)(

2 )()(  for a standardized normal random variable, it is easy

to show using variances that ∑ < .))(( 2
)( nZE i   It is apparent that when normal data is

very good )(( ix  near ikσµ + ) then 2
LSσ  underestimates 2σ .  This is because 

1

2

−
∑
n

k i is

slightly less than one; e.g. at n = 20, 222 92.0
19

63.17
σσσ ==LS  while σσ =oˆ .

3. Heuristic Motivations

Other Geometrical and Analytical Motivations for the Order Statistic Estimation of
Variation

The least squares and order statistic estimates are related analytically as follows.
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−
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n

zxx
E ii .  Now the order statistic estimate is

obtained by replacing )(iz  by nikzE ii ,,2,1,)( )( L== .   So we have

=
−

−
≅ ∑
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kxx ii
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σ
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∑
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oσσ .

We notice that 
1

)
1

ˆ(
2

2
2

−
=

−
∑∑
n

k

n

k
E ii

o σσσ .  So replacing )(iz  by ik  for all i has resulted in

biasing the estimate of 2σ  but σσ =)ˆ( oE .
A geometric derivation looks at SSX, the sum of squares of the vertical distances

of the )( ix  from the x  line, and SSE, the sum of squares of the vertical distances of the

)( ix  from the order statistic regression line whose slope is oσ̂ . These lines are shown in

Figure 1.  For each point ),( )( ii kx ,  the regression line, and the x  line let θ  be the angle
between them at the horizontal origin.  Then it is approximately true that

i

i
o k

xx
slope

−
≅== )(ˆtan σθ .

Then, xxk iio −≅ )(σ̂  and for least squares 2
)(

22 )(ˆ xxk iio −≅σ  so that

2
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xx
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k
σσ =

−

−
≅

−
∑∑ .  This approximation should be valid for other

techniques for fitting a regression line to estimate σ .  For good data the different
estimates should be close together, but for bad data 2

LSσ  will be, in general , an inflated
estimate of variability and the other correlation techniques should be more valid.  These
same statements hold for the order statistics norm that is introduced.

4. An Order Statistic Norm ( or Partial Norm)

Let r be any correlation coefficient and solve for oσ̂  in the equation

0)ˆ,( =− kxkr o
o σ  and let oµ̂  be either the mean or median of the uncentered residuals

)ˆ( kx o
o σ− .  This method is discussed in Gideon(scale estimation).  Use of the mean

would tend to make the norm less robust.  So for nonparametric   correlation coefficient
norms the median is used.

 Recall that the usual square of the  Euclidean norm is ∑
=

−+=′=
n

i
i xxxnxxx

1

222
)( .

Definition 1: The Order Statistic Norm
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∑
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knx
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2222 ˆˆ σµ .

In Table 0, two order norms are given, one with GD and one with Pearson’s correlation
coefficient.  The intercept of the kk regression is oµ̂ , and n = 6.
In Proposition 3, if there is a strict linear relationship between the )( ix  and the ik then

these two norms will be the same if σσ =oˆ , the slope of the linear relationship.

Example 1:  Let r be Pearson’s r and from earlier o
i

ii

k

xk
σ̂2

)( =
∑

∑ .  Then the mean of the

uncentered residuals is x  and ∑∑
∑∑ 










+=+=
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2222 ˆˆ i
i
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xk
xnknx σµ .  In order

to make the order norm  comparable to the usual norm we now take

ni
n

ik i ,,2,1),
2

1
( L=

+
−= ; that is, the first n integers  centered at 0.  Because now

∑ −
=

12
)1( 2

2 nn
k i  this order statistic norm with Pearson’s correlation coefficient is

∑ +
−

−
+= 2

)(2
22 ))

2
1
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)1(

12
io

x
n

i
nn

xnx .  Call this the Pearson order norm.  In certain

cases, the order statistic norm should agree with the regular norm. One case is when n

equals two.     When n = 2, 2
21

2 )(
2
1

2 xxxx −+=  and for the Pearson order norm

22
)1()2(

22
)2()1(

22 )(
2
1

2)
2
1

2
1

(
3*2

12
2 xxxxxxxx

o
=−+=+

−
+= .

All other correlation coefficient norms should also be equivalent to the usual norm when
n = 2 because there is no error in fitting a slope to two points.  However, for
nonparametric  correlation coefficients (based on ranks) the computation depends on the
tie breaking procedure introduced in Gideon and Hollister (1987). The idea is simple but
necessary.  Let r be any nonparametric correlation coefficient , say Kendall’s tau or the
Greatest Deviation as in G&H.  Let ),( yx be the data in which some or even all values

could be tied.  Then let ),( yxr + be the correlation coefficient value when ties are broken

to produce ranks that give the largest possible value.  Similarly let ),(_ yxr  be the least
possible value.  Then r is defined to be the average of these two extremes.  The first use
of this will be when all y values are the same and when x and y are converted to ranks,
the x vector for r+ will be 1,2,3,…,n while the y vector in ranks will all be same value.  In
this scenario r+ will be one and r- will be minus one so that r =0.  Let NPr represent a
nonparametric correlation coefficient.
Proposition 4: For an NPr order norm where )ˆ(ˆ kxmedian o

o
o σµ −=  with n = 2,

22

o
xx = .
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Proof: For n =2, 
2
1

1

−
=k  and 

2
1

2

+
=k  and the slope of the line is )1()2( xx − .  It is now

demonstrated that with )1()2(ˆ xxo −=σ , 0)ˆ,( =− kxkr o
o

NP σ .  We have
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σ
σ

σ .  Thus, xo =µ̂ .  When the k vector

is converted to ranks it is (1,2) while the residual vector has two tied values.  Thus
0)ˆ,( =− kxkr o

o
NP σ because it is the average of +1 and –1 which is zero.  So we have

22
)2()1(

22
)1()2(

22 )(
2
1

2)
4
1

4
1

()(2 xxxxxxxx
o

=−+=+−+= .  This is an application of

Proposition 3 with ∑ ∑=− 222 ˆ)( ioi kxx σ where )1()2(
)2()1( ˆ,

2
xx

xx
o −==

+
= σσµ

Example 2: If ),,2,1( ′= nx L  and as before 
2

1+
−=

n
ik i  for all i, then 22 xx

o
= .

Proof:  This again illustrates the use of Proposition 3.  The relationship between the
points

),
2

1
(),( )( i

n
ixk ii

+
−=

is strictly linear with a slope of 1=σ .  Now 1
2

1+
=−

n
kx o σ   where 1 is a vector of 1’s.

In the solution of 0)*1,( =− kxkr o
NP  the second argument has all ties and hence by the

G&H tied value procedure 1ˆ == σσ o (as in the above n=2 example, the correlation
coefficient is the average of +1 and –1 which is zero).   Also the median of the set of all

tied values is the mean of the first n positive integers, 
2

1+n
.      Also

∑ ∑∑ −=
+

−= 222 )()
2

1
( xx

n
ik ii .  Hence, we have

∑ =
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n
ixnx

o
.  It is known that ∑ −

=
+

− .
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)

2
1

(
2

2 nnn
i

5. Properties of the Order Statistic Norm

As stated in Corollary 1.3.33 of Randles and Wolfe,  if the vector of observations
is the outcome of a random sample of a random variable X, which is  symmetric about
point m, the sample mean, x ,  is an odd translation statistic,  SSX is a even translation-
invariant statistic, and 0),cov( =SSXx . The same properties hold for the parts of the
Order Statistic Norm, oµ̂  and oσ̂ .  In our proofs we use the standard properties of
correlation coefficients and symmetry,  and the results hold for all  such standard
correlation coefficients
Proposition 5: oσ̂ is an even translation-invariant statistic
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First the invariant part follows from the translation invariance property  of
correlation coefficients.  Let njcxy jj L2,1, =+= .  If oσ̂  is the solution of

0)ˆ,( =− kxkr o
o

NP σ , then

=− )ˆ,( kykr o
o

NP σ =−+ )ˆ)(,( kcxkr o
o

NP σ =−+ )ˆ,( kcxkr o
o

NP σ 0)ˆ,( =− kxkr o
o

NP σ .

For the evenness we need  to show that )(ˆ)(ˆ xx oo −= σσ .  Let )()()1( ni xxx <<< LL  and

)()()1( ni xxx −>>−>>− LL or in terms of order statistics of –x

)1()1()( )()()( xxx inn −>>−>>− −+ LL .  That is, nixx ini ,,2,1)( )1()( L=−=− −+ .  We also

use the symmetry of the k vector, nikk ini ,,2,1,`1 L=−= −+ .  In vector notation this

becomes =− ox the transpose of ( ))1()1̀()( )(,,)(,,)( xxx inn −−− −+ LL .  The reverse of this

column vector contains the order statistics for –x and, letting )(krev  be the k vector in

reverse order, we have  )()( krevkrevk −=−= .  Now 0)ˆ,( =− kxkr o
o

NP σ  and so

=−− )ˆ,( kxkr o
o

NP σ =−−−− ))(ˆ,( kxkr o
o

NP σ  0)ˆ)(,( =−− kxkr o
o

NP σ , upon reversing
the order of the x and k vectors for this last equality to be true.   Thus, )(ˆ)(ˆ xx oo −= σσ ,
and the scale operation is even.
Proposition 6: oµ̂  is an odd translation statistic.

First the translation property.  If cxy +=  then from Proposition 5, oσ̂ , for both

the x and y, is the same.  Let oµ̂ be the mean or median of the uncentered residuals

)ˆ( kx o
o σ− .  Then )(ˆ yoµ = )ˆ( kcxmedian o

o σ−+ = )ˆ( kxmedianc o
o σ−+ =c+ oµ̂ .

The same is true if the mean rather than the median is used.  For the odd property, the
same notation is used as in Proposition 5, and either the mean or median can be used and
again the statistic  oσ̂ stays the same.   If 0ˆ)( <− ioi kx σ  then 0ˆ)( >+− ioi kx σ , but this

can be written as 0ˆ)( 1)1( >−− −+−+ inoin kx σ .  This holds for all i and a similar result holds
fi the residuals are positive.   This means that

)ˆ)(()ˆ( kxmediankxmedian o
o

o
o σσ −−−=−  or )(ˆ)(ˆ xx oo −−= µµ .

Proposition 7: For the GDCC  
oo

xx =−
The proof follows from the previous two propositions.

=−+−=− ∑ 2222 ))(ˆ())(ˆ( iooo
kxxnx σµ  =+ ∑ 222 ))(ˆ())(ˆ( ioo kxxn σµ 2

o
x

Proposition 8: oµ̂  and oσ̂ are uncorrelated when the data are random

We would like the order statistic norm to have nearly the same properties as the usual
Euclidean norm.  By Proposition 5, oσ̂  is even translation-invariant and by Proposition 6,

oµ̂  is an odd translation statistic and so by Corollory 1.3.33 of Randles and Wolfe
0)ˆ,ˆcov( =oo σµ which is the same property for x  and SSX.  In vector notation
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0)1(1 =−′ xxx  is the equivalent of the cosine or covariance of x  and SSX being zero.

The comparable form for the order norm is 0)ˆ,ˆ( =− kxkr o
o

o σµ .

Example 3: if ),,,( ′= cccx L , then 22

o
xx =

It is clear that 22 ncx = .  For the order norm 0ˆ =oσ  and hence, cxmedian o
o == )(µ̂ .

Thus, 222 0ˆ ncnx oo
=+= µ .

Example 4: If ,xcy =  then 222

oo
xcy = .  For now let c>0.

By the properties of the scale and location statistics )(ˆ)(ˆ xcy oo σσ =  and

)(ˆ)(ˆ xcy oo µµ = .  Therefore, ∑+= 2222
)(ˆ)(ˆ iooo

kyyny σµ = ∑+ 22222 )(ˆ)(ˆ ioo kxcxnc σµ =
22
o

xc .  Proposition 7 can be used to obtain the result when c < 0.

Example 5: If cxy += , then 
2

y  and  2

o
y  have comparable forms

By the scale and location properties )(ˆ)(ˆ xy oo σσ =  and cxy oo += )(ˆ)(ˆ µµ .

Thus, we have ∑++= 2222
)(ˆ))(ˆ( iooo

kxcxny σµ .  The form for the usual norm is

∑ −++=+ 222 )()(1 xxcxncx i .  This is a comparable form.

6. The Order Inner Product, Covariance, and Correlation Coefficient

From the order norm it is possible to define an inner product, a covariance, and a
corresponding correlation coefficient. In the following expression V is variance,
V(X+Y)=V(X) + V(Y) +2COV(X,Y).  Let the equivalent sample sum of squares for
these terms be SSX, SSY, SS(X+Y), and SSXY where for example,
SSXY = ∑ −− ))(( yyxx ii  and SS(X+Y) = 2)(∑ −+− yyxx ii . Then the sample
version of the formula is SS(X+Y)=SSX + SSY +2SSXY.   Now let superscript o denote
the order statistic equivalent; SSo( X+Y) = ∑+

22
,ˆ iyxo kσ , etc. Then to define the order

statistic sample covariance function we need to compute from their part of the order norm
function, SSo(X+Y), SSoX, and SSoY, and make the analogy with the standard sample
covariance function.

Definition 2: The Order Covariance function

SSoXY = (SSo( X+Y) – SSoX –SSoY)/2
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Because SSXY = ∑ − yxnyx ii  where in inner product notation ∑>=< ii yxyx, it is

now possible to define the order “inner product”  oyx >< , .  First recall that

2/)2)((, yxnSSYSSXYXSSyx +−−+>=< .

Definition 3:  The Order Inner Product is defined as
2/)ˆˆ2)((, ,, yoxo

ooo
o nYSSXSSYXSSyx µµ+−−+=><

Definition 4:  The Order Correlation Coefficient

))((
ˆ

YSSXSS

XYSS
oo

o

o =ρ  =  
yoxo

yoxoyxo

,,

2
,

2
,

2
`,

ˆˆ2

ˆˆˆ

σσ

σσσ −−+

In this definition it is probability best to use for the k vector the expected values of the
order statistics so that unbiased estimate of the standard deviations are obtained.

Example 6:  2,
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This is easy to show by substitution and the property that 2
,

2
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equivalent of V(2X) = 4V(X).

In these next few examples, it is shown that the order correlation coefficient has some
regular features of correlation coefficients.
Example 7: If X = Y 1ˆ =oρ

Any legitimate  correlation coefficient must have this property and the property in
example 8. This property  follows because yoxo ,, ˆˆ σσ =  and 2

,
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Example 8:  If Y = -X, 1ˆ −=oρ .

Now because X+Y=0, from definition 4 
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Example 9: If X and Y are independent, the order correlation coefficient, oρ̂ , is
estimating zero.
If the correct expectations of the standardized order statistics are used for the vector k and

because V(X+Y) = V( X) + V(Y), then yxo +,σ̂  estimates 22
yx σσ + in an unbiased

fashion, see G3.   Then the numerator of oρ̂ is estimating 2222
yxyx σσσσ −−+ =0.

Example 10: The Order correlation coefficient with Pearson’s r
Because Pearson’s correlation coefficient has a closed form solution for the Order

correlation coefficient it can be explicitly stated.  Let )()( iyx +  be the ith order statistic for
the sum of the x and y data.  Then from Section 1 and Definition 4 for Pearson’s r
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In this formula the terms ∑ 2
ik have cancelled.

7. What is a Zero for the Order Norm?

The Order Norm has been tested on some real data, but before that can be
discussed it must be understood what constitutes a zero when the Order Norm uses the
Greatest Deviation correlation coefficient in its definition.  Other correlation coefficients
would have somewhat different zeros and other properties.  Table 2,  given below, shows
how much of the data must be zeros to have 0=

o
x .  The general rule is that if about

2/3rds of the data are zeros then the GDCC Order Norm is zero.  This means that 1/3rd of
the most extreme part of the data does not have an influence on the Norm.  Thus,  the
Order Norm is robust when up to 1/3rd of the data is erratic.  When almost all of the data
points are good these order methods  and classical methods are approximately equally
effective.

                                                            Table 2
Sufficient number of zero coordinates for the Greatest Deviation Order Norm to be Zero
Sample Size Number of Zeros needed to produce a Zero
7 6
14 10
21 14
36 25
96 65
600 401
This table was produced by an actual computer run of the Order norm with the GDCC as
its defining criteria.  Recall that a zero means that both oµ̂  and oσ̂ are zero.  This
happens because the GDCC is a point counting scheme that is solved for the variation
estimate, and also the median is used for the location.

Example 11: The Triangle Inequality does not hold for the gdr Order norm.

For a 7 dimensional vector let ix  be a vector with an i in the ith position and zeros
elsewhere.  Then from Table 2, all the Order norm values of the ix  are zero, but the
Order norms of the sums are not zero.  Thus, the Order norm of the sum is not less than

or equal to the Order norm of the individual vectors.  Let 7,,2,1,
1

L== ∑
=

jxy
j

i
ij

.  Table

3 shows the norms of the 
j

y vectors so that a comparison can be made between the Order

norm and the Euclidean norm.
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Table 3: Values of the Order norm and Euclidean norm on the 
j

y vectors

j
j

y Order Norm Euclidean norm

1 (1,0,0,0,0,0,0) 0 1
2 (1,2,0,0,0,0,0) 1.247 2.236
3 (1,2,3,0,0,0,0) 3.754 3.741
4 (1,2,3,4,0,0,0) 5.647 5.472
5 (1,2,3,4,5,0,0) 7.483 7.416
6 (1,2,3,4,5,6,0) 9.539 9.539
7 (1,2,3,4,5,6,7) 11.832 11.832
It is actually the case that both norms agree exactly for j = 6 and 7.  Because the triangle
inequality does not hold with GDCC, the Order norm is not a true norm, and perhaps it
should be called a “partial” or “pseudo” norm. Computer simulations do show that this
inequality seems to hold for data generated from continuous random variables. The
triangle inequality would have to be investigated for each correlation coefficient to see if
it holds, but the use of the median would suggest otherwise.

Example 12: Satellite data and Land cover classifications
This example comes from Satellite data where the color spectrum of the land surface and
land cover type were recorded.  The elevation was also recorded and put in units
comparable to the light spectrum readings. Eight color bands and the elevation were
recorded for polygonal regions of average size 0.09 square kilometers. Only six of the
color bands were found to be useful classifiers for this data.   Based on this information
the land surface is to be classified into various types.  This data was training data in order
to construct a classification rule and then estimate the accuracy of various classification
methods by cross validation.   This was accomplished by classifying each of 2528
observations using the other 2527 observations. The norms of the differences were
calculated.  Two nearest neighbor methods were used in which the K closest points were
selected and the observation being classified was assigned to the group that had the most
observations among these K points.   The usual K-nearest neighbor (K-NN) classification
used Euclidean distance to measure closeness (the Euclidean norm).

In order to promote a better understanding of the Order norm, some standard
statistics are given for two points and their difference. Because the Order norm is
computed via location and scale estimates, these types of statistics are listed for both the
Euclidean and Order norms.  These two points and their difference are given in Table 5.
The norms of the differences were used in the nearest neighbor selection process.   In
Table 4  these two seven-dimensional points are labeled x1 and x2.  These points are from
Group 4212 and the Order norm for K = 10 assigned them to the correct group while the
Euclidean norm did not.  The classical statistics include the median, mean, standard
deviation and the corresponding norm.  The Order norm statistics include the location

estimate and the analogous standard deviation.  Since 
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,  the comparable estimate to the classical standard deviation from
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Section 3 is 
3

14ˆ oσ  where oσ̂  is the slope of the line in the Order norm development.

Label this SDo.
      Table 4:                           Statistics for two observations and their difference
                        Classical statistics Order method statistics

median mean SD norm oµ̂ oσ̂ SDo O norm

x1 57 63.43 40.59 195.06 57.75 14.75 31.86 171.57
x2 60 68.14 39.75 204.90 64.08 15.92 34.39 189.31
x1-x2 -3  -4.71   5.02   17.52  -4.33   1.66   3.60   14.46

The actual values used above are given in the table below.
Table 5 TM1 TM2 TM3 TM4 TM5 TM7 Elev
x1 57 24 26 43 66 140 88
x2 60 26 29 49 80 138 95
x1-x2 -3 -2 -3 -6 -14 2 -7

Other than the Order norm being slightly less than the classical norm, no obvious reason
appears as to why the Order norm and not the classical norm correctly classified these
two points.  If more points are looked at, the Order norm is usually less than the classical
norm using GDCC because of its robustness.  The location estimate from the Order norm
most often is between the classical mean and the median as it was for the above data.

    Table 6:       The number of correct classifications for Landcover Type (Group)
                                      Nearest Neighbor classification when K = 10
Group 3100 3300 4101 4203 4205 4206 4212 4223
n 277 657 18 207 52 108 442 143
Norm 166 569 0 136 17 93 317 55
O norm 126 572 0 128 9 68 342 52
Group 4230 4260 4270 4300 6100 7800        Totals
n 24 38 112 25 281 144        2528
Norm 2 11 51 2 247 98        1764
O norm 1 6 50 3 228 82        1667

In examining Table 6 for the effectiveness of the Order norm it is seen that the
Order norm is better for Group 4212 and nearly the same for Groups 3300, 4101, 4203,
4223, 4230, 4270, 4300 and possibly not as good in the remaining six groups.  The
overall effectiveness of the Order norm was 0.659 whereas it was  0.698 for the classical
method.  As the “true” classification is necessarily subjective it is not really clear which
method is best.  The closeness of the two methods  in many groups and one being better
in other groups demonstrates, however, that the Order method does allow a different and
valuable robust look at the classification procedure.  Group #4212 is the Douglas Fir land
cover type.  This type is a closed-canopy forest  which is pure, or nearly pure Douglas
Fir.  Because co-occurring  species (e.g. Ponderosa Pine) are common, the type is easily
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confused with several others (e.g. Douglas Fir/Ponderosa Pine, Douglas Fir/Lodgepole
Pine).

8. Summary
The development of an alternative norm has promise for any data that might not be
perfect or cannot be screened.  With the use of the Order norm with GDCC it is
sufficient to use the vector components as they are and hence, avoid the difficult and
subjective task of deleting or re-weighting suspicious data.  The use of the Order
norm on the Satellite data showed that except for the Douglas Fir land surface types
the relative low classification ability of the Euclidean norm is not due to the influence
of outliers.  Satellite data is such that massive amounts are gathered and elaborate
screening of the data seems impractical.  Mathematical and statistical techniques are
needed that are robust and straight forward.  Only one nonparametric correlation
coefficient was tested on real data in this paper but other correlation coefficients
could be used to construct Order norms and then tested for their properties.
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