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ABSTRACT

This short piece provides an introduction to the use of Kendall's τ in correlation and

simple linear regression. The error estimate also uses Kendall's τ so that sums of squares

are avoided.  A population or random variable approach using elementary slopes

demonstrates a natural way to introduce Kendall's τ . This paper uses population and

sample concepts to fuse correlation and regression together into a correlation estimation

system (CES) that allows regression to follow directly from correlation. A slightly

different formulation of τ is needed to do this. In Hollander and Wolfe (1999) as well as

other publications there are separate areas on correlation and regression and it is not easy

to see any connection and this paper hopes to correct that. It was pointed out by Huber

(1981) that classical regression loses its optimality if only one percent of the data is

questionable. Since this is almost always the case, regression with robust properties

(implying that a few errant data points do not severely affect the inference) such as

presented here are preferable.
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1.  INTRODUCTION

A few short sections  set the stage. Let ),( YX be a continuous bivariate random variable

and ),( 11 YX  and ),( 22 YX two independent outcomes.  Assume interest lies in both the

correlation and the simple linear relationship between X  and Y .  The random variable
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is known as an elementary slope (ELS) as it is the slope of the line between the

two points ),( 11 YX and ),( 22 YX . An elementary slope is called concordant if it is

positive and discordant otherwise.   The population version of Kendall's τ can be

formulated as the parameter
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P . Thus τ is simply

the excess of concordant over discordant slopes, or vice-versa. Let
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P and cd pp −= 1 .  Note that τ lies between -1 and +1, and if τ = 0,

then 2/1)0(
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2. POPULATION VALUE OF τ  FOR THE BIVARIATE NORMAL

Assume now that ),( YX is a bivariate normal random variable with means xµ , yµ ,

variances 2
xσ , 2

yσ  and covariance ρσσ yx .  Then the ELS random variable 
21
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has a

distribution equal to o
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y
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y R21 ρ
σ

σ

σ

σ
ρ −+  where oR has the standard Cauchy

distribution.  The density and cumulative distribution function of oR are ))1((1 2x+π and

π
)arctan(

2
1 x

+  for x over the real line.  The elementary slopes and correlation coefficient

ρ can now be related.
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This can be solved for ρ in terms of )0(
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After a wee bit of algebra the equation becomes ))5.0(sin( −= cpπρ .  Now because

12 −= cpτ , this latter equation can also be written as )2/sin(πτρ = .  Because of the

symmetry of oR  about 0, the random variable 
21
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 is symmetric about the slope

x

y

σ

σ
ρ .  This is used to discuss a natural estimate of the slope in simple linear regression.

3. THE REGRESSION SETTING

Two more theoretical relationships are needed. First the simple linear regression model

for the bivariate normal is )( xXYE =  = )( x
x

y
y x µ

σ

σ
ρµ −+ ; that is, the slope is

=β
x

y

σ

σ
ρ and the intercept is =α x

x

y
y µ

σ

σ
ρµ − . Second is needed the distribution of

XY
x

y

σ

σ
ρ− .  From properties of the bivariate normal and standard variable

transformation theory, this distribution is normal with mean x
x

y
y µ

σ

σ
ρµ −  and variance

)1( 22 ρσ −y .  Note that this distribution is also symmetric about its mean, which is the

intercept in the simple linear regression.

4. POPULATION REGRESSION WITH KENDALL'S TAU
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The regression residuals are uncorrelated with the regressor variable for a correlation

coefficient parameterθ , if b is found such that

                                                          0),( =− bXYXθ .                                                   (1)

In CES this equation is called the population regression equation. Solving for b gives the

slope of the population linear model. It is now shown that the solution of

0),( =− bXYXτ  is 
x

yb
σ

σ
ρβ == ;that is τ gives the correct slope in the population

regression equation. To prove this, start with  0),( =− bXYXτ and from the definition of
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by substituting the distribution of an ELS and for 
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y ρ
σ

σ
)0( 0 >RP  = .2/1  Again the last

step follows from the symmetry of R0 about 0. So indeed the population regression

coefficient is obtained via τ and the population regression equation.

5. CORRELATION AND SAMPLE REGRESSION WITH KENDALL'S TAU

5.1 Estimation of Kendall's τ
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For a random sample of size n from an absolutely continuous distribution with data in

column vectors ),( yx , form the elementary slopes — all 







2
n

 of them. Estimate cp , the

probability of concordance, by cp̂ , as the number of concordant elementary slopes

divided by 







2
n

.  Because cd pp −= 1 ,  cd pp ˆ1ˆ −= .  Then the sample value of Kendall's

τ  is dc ppyx ˆˆ),(ˆ −=τ , that is, the difference between the relative number of concordant

and the relative number of discordant elementary slopes. It follows from the population

ideas above that ))5.ˆ(sin(ˆ −= cpπρ   = )2/ˆsin( τπ .

5.2 Estimate of Slope

Note that for the bivariate normal the population median of ELS is 
x

y

σ

σ
ρ as given in

Section 2. It is known that the sample median from a symmetric population has the

population median as its point of symmetry. In the case of the set of elementary slopes,

there is not total independence, but one would still expect the sample median to vary

about the population median. In other words, a natural estimate of the slope, 
x

y

σ

σ
ρ , is

obtained as the median of the sample elementary slopes. It is now shown that τ gives this

estimate by using the sample equivalent of equation (1). To have the residuals and x

uncorrelated, in equation (1) replace random variables by data and obtain the sample

regression equation

                                                                  ),( bxyx −τ = 0.                                             (2)



6

But also ),( bxyx −τ = )()( bpbp dc −  where )(bpc is the fraction of ELSs that are

positive for a chosen b and )(bpd is the fraction of ELSs that are negative for a chosen b.

The ELSs for the sample with a given b are 
ji

jjii

xx

bxybxy
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−−− )()(
= b

xx

yy

ji

ji −
−

−
for

nji ≤<≤1 . The sample regression equation is solved if there are an equal number of

concordant and discordant ELSs; that is, when )()( bpbp dc = which means

}{# b
xx
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= }{# b

xx
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−

−
 or that }{

ji

ji

xx

yy
medianb

−

−
= .  Sen (1968) is a good

source for a different approach to slope estimation via Kendall's Tau.

5.3 Intercept

After the slope b is estimated the intercept is estimated by the median of the set of

residuals ii bxy − , call it a .  This is because b is estimating 
x

y

σ

σ
ρ  and XY

x

y

σ

σ
ρ−  is

symmetric about the population intercept x
x

y
y µ

σ

σ
ρµ − . Then the Kendall estimate of the

linear relationship is ii bxay +=ˆ .

5.4 Inference on the Slope

For inference on 
x

y

σ

σ
ρβ = , the asymptotic result in Gideon (2008) is used; it is shown

there that ββτ −ˆ has an asymptotic N(0, )
)1(9 2

22

x

res

n σ
σπ
−

distribution. (Sen 1968 also

develops a different inference). The quantity 2
resσ  is estimated from the residuals around

the Kendall regression line, while 2
xσ is estimated by a sample variance of the regressor
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variable x.  In the spirit of using just Kendall's τ to estimate all quantities, here is the CES

approach.  Let ))1((1 +Φ= − nizi  for ni ,,2,1 K= where Φ is the distribution function of

a N(0,1) random variable.  Now the zi are used with the order statistics for the residuals

( )( ires ) and  ( )( ix ) to estimate the standard deviations.   Solving the regression equations

(with the same logic as above) but now with ordered data denoted by the superscript o,

0)ˆ,( =− o
x

oo zxz στ and 0)ˆ,( =− o
res

oo zresz στ , leads to the following  (Gideon and

Rothan 2007):
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6. EXAMPLES AND SIMULATIONS

The above work is next carried out for the example in Sen (1968), x={1,2,3,4,10,12,18},

and y={9,15,19,20,45,55,78}.  First, the −τ estimated intercept and slope are 6 and 4.

The two estimated standard deviations are xσ̂ = 7.41 and resσ̂ = 1.48; the classical results

are 6.34 and 1.21, respectively. The ratio of the resσ̂ / xσ̂  in the SD of the slope above can

be computed in two ways. First by computing xσ̂ and resσ̂ and taking the ratio. A second

way that avoids involving a distribution is possible with the CES by computing












−

−
=

)()(

)()(

ji

ji

xx

resres
medianratio directly; that is, solve 0)*,( =− ooo xratioresxτ . Both

give the same result, 0.200. The estimated SD is 2

22

ˆ)1(9
ˆ

x

res

n σ
σπ
−

 which is 200.0*
63

π
 =

0.0855.  So the approximate 93% confidence interval (same level as in Sen) is

0855.0*812.14 ±  = 155.04 ± where 1.812 is the upper 0.965 quantile of a standard

normal.   The lower number is 3.85 compared to Sen’s 3.71 and the upper number is 4.15
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compared to 4.18; considering that the sample size is only 7, these numbers are very

close. In his paper Sen points out why Tau (robust) should be used so it is not necessary

to repeat the reasons here.

A number of simulations with various parameters were run in order to further

authenticate the asymptotic distribution of the slope, but only one of each type is

discussed.  First a simple linear regression was constructed with standard normal

variables for a sample of size 25 and a confidence coefficient of 50 %. The model was

ερρ 21 −+= xy  with x and ε  independent N(0,1), and so the correlation ρ is also the

slope of the regression line.  Of 1000 simulations, 48 % contained the true slope — just

about what is expected.

A second simple linear regression was run on binomial variables. First x was generated as

a binomial random variable based on 15 Bernoulli trials with the probability of success

21=p . Then y was generated by choosing a slope and adding error with the same

Binomial but centered by subtracting n*p, so )5.7)21,15((* −+= Bxslopey .   Again

25 observations were taken and a 50 % confidence interval constructed.  Of 1000

simulations, 63% of the confidence intervals included the true slope.  This, of course, is

far more than expected.  There were many tied values on both the x and y data for the

binomial and so the asymptotic distribution may be less accurate, but the fact that the

confidence interval level was higher than expected is promising. A further motivation for

giving this last example is to show that CES with Kendall's can be appropriately used on

discrete data, just as normal theory techniques. In both cases, it is known that the results

are only approximate.
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7. CONCLUSION

Most practitioners of statistics focus only on least squares and sums of squares

procedures and have the impression that these are the only easy to use and

straightforward procedures for regression analyses. The compact synthesis (of

population, sample, correlation, and regression) presented herein is meant to promote the

use of Kendall's Tau and the CES to show that there are alternatives that are not only easy

to use but are in addition inherently robust. Other correlation coefficients, both

nonparametric and continuous, could be studied in a similar manner; the author has

examined a few of these, but only Greatest Deviation Correlation Coefficient (Gideon

and Hollister 1987) has been extensively studied. To summarize, both the population and

sample versions of Kendall's Tau are used to examine correlation and the parameters in a

simple linear regression. It should be noted that the invariance properties given in Sen

(1968) are easily approached through the correlation notions in this paper. What, perhaps,

has held up using Kendall's and Sen's concepts in statistical analysis is that their work in

correlation and regression has not been viewed as related much less as a universal

system; correcting this has been one of the goals of this paper. Additionally the advance

of computing has made this approach very feasible. This approach also leads to a nice

way to extend Kendall's Tau into multiple linear regression; see Gideon (2008).

Customized R or S-Plus programs are given in the appendix to obtain the Kendall

estimates in simple linear regression. These use the max-min method for dealing with ties

found in Gideon and Hollister  (1987) so that estimates are available no matter how many

ties there are. This method of tie breaking gives the same results as those in packaged S-
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Plus routines but not as those in the R routines. However, this max-min tie breaking

method is the only feasible method for the Greatest Deviation Correlation Coefficient and

so is more general.

APPENDIX: R OR S-PLUS ROUTINES FOR CORRELATION AND SIMPLE

LINEAR REGRESSION WITH KENDALL'S TAU

# computing   the two unique vectors with ties present: the function is tauuniq
tauuniq <- function(x,y) {
n <- length(x)
e <- 1:n
xrr <- n+1 -rank(x)
xtp <- x[order(y,x)]
xtn <- x[order(y,xrr)]
rkyp <- order(xtp,e)
rkyn <- order(xtn,n:1)
out <- cbind(rkyp,rkyn)
out  }

# calculation of Kendall's tau on unique max-min vectors
# the function is rtau
rtau <- function(x,y){
ot <- tauuniq(x,y)
rkyp <- ot[,1]
rkyn <- ot[,2]
dyp <- 0
dyn <- 0
n <- length(x)
n2 <- ((n*(n-1))/2)
n1 <- n-1
for(i in 1:n1) {j <- i+1
tempp <- rkyp[i]-rkyp[j:n]
tempn <- rkyn[i]-rkyn[j:n]
dyp <- dyp + sum( tempp<0)
dyn <- dyn + sum( tempn<0)
}
out <- (dyp + dyn)/n2 -1
out  }

# output is slope and intercept, function name tauslp in positions 1 and 2
tauslp <- function(x,y) {
rat <- c(outer(y,y,"-")/outer(x,x,"-"))
ratv <- rat[!is.na(rat)]
slp <- median(ratv)
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res <- y - slp * x
aint <- median(res)
res <- res - aint
ck <- rtau(x,res)
ck1 <- sum(res)
ck2 <- median(res)
out <- c(slp,aint,ck,ck1,ck2)
out   }
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