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In a bivariate data plot, every two points determine an “elementary slope.”  For n points 
with distinct x-values, there are n(n – 1)/2 elementary slopes.  These elementary slopes 
are examined under the two classical regression assumptions: (1) the regressor variable 
values are fixed and the error is independent and normal, and (2) the data is bivariate 
normal.  For case (1), it is demonstrated that a weighted average of the elementary slopes 
gives the standard least squares estimate.  In case (2), it is shown that the elementary 
slopes have a rescaled Cauchy distribution; this Cauchy distribution is then used to 
estimate bivariate normal parameters.   Two nonparametric correlation coefficients, 
Kendall’s τ and the Greatest Deviation correlation coefficient (GD), are used with 
elementary slopes in regression estimation.  Simulations show the robustness of the 
nonparametric method of estimation using Kendall’s τ and GD. 

Keywords:  bivariate normal, Cauchy distribution, Kendall’s τ , Greatest Deviation 
correlation coefficient 
 
This work depends in part on earlier unpublished work of Gideon and is available on his 
web site: www.math.umt.edu/gideon.  Some of the references will refer to papers posted 
at this web site.   
 
1. Simple Linear Regression with fixed regressor variable data 
 

Let the regression equation model be εβα ++= xy , errors independent with 
2)( σε =V  and .0)( =εE  Let ( ){ }niyx ii ,,3,2,1|, K=  be the data with distinct x-

values.  Then the set of n(n-1)/2 elementary slopes are 
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Because 0)( =− ijE εε , each slope is unbiased for β .   Also 
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  In U-Statistics methods (Randles and Wolfe 

1979), it would be suggested that the 
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  elementary slopes be averaged to obtain an 

unbiased estimate.  However, this is slightly changed here by taking a weighted 
average with the weights being the reciprocals of the variances of the elementary 
slopes.   
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Lemma 1: The weighted average of the elementary slopes gives the usual least     
squares estimate of the slope. 
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 set of indices (i, j), ji ≠ .  Then the sum of the weights W is 
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Result (1.1) is related to one-sample U-statistics (Randles and Wolfe 1979, pp. 61-63) 
and follows from the demonstration of the equality (1.2), shown below, when y is 
taken as x.  
For distinct x-values and ji ≠ , the weighted-average estimate is 
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Finally, substituting for W gives: 
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To demonstrate equality (1.2), an example is shown for n =4.  Then the set A has 6 
points; )}4,3(),4,2(),3,2(),4,1(),3,1(),2,1{(=A .   
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If not all ix are distinct, the formulas and equations will hold if when ji xx = , 
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is interpreted as zero since its limit as 0→− ij xx is zero.  These terms 

must appear in the summations.   
 
By extending the idea of a U-Statistic to a weighted average, it has been shown that 
the classical least squares estimate of slope is a weighted average of elementary 
slopes.   
 

2. Simple Regression with Bivariate Normal Data 
 

In this section, the data ),( YX have a bivariate normal distribution.  Again the 
elementary slopes are analyzed, but now both the numerator and denominator are 
random variables.  It is shown that the elementary slopes for a bivariate normal 
distribution have a Cauchy distribution.  It is then shown how to use the Cauchy 
distributed elementary slopes to estimate the regression parameters for the bivariate 
normal.      

The equal in distribution notation 
d

=  defined in Randles and Wolfe (1979, p.13) is 
used. 
 
Lemma 2: The elementary Slopes for a Bivariate Normal Distribution have a rescaled 
Cauchy Distribution. 
 
Proof:  First, let ( YX , ) have a standardized bivariate normal distribution with 
correlation coefficient ρ .  Then for two independent observations ),( 11 YX  and 

),( 22 YX , let 21 YYU −=  and 21 XXV −=  so that U/V = R (R for ratio) is the 
elementary slope.  The random variable ),( VU  has a bivariate normal distribution 
with means 0, variances 2, and correlation coefficient ρ .  In order to obtain the joint 
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distribution of ( SR, ), let R=U/V and S=U.  Obtain the joint distribution of ( SR, ) 
and integrate out S to obtain that the distribution of R is Cauchy with location 

parameter ρ  and scale parameter 21 ρ− .  The density for R is 
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Let 1R denote this Cauchy with location parameter ρ  and scale parameter 21 ρ− .   
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In the case where ),( YX has a bivariate normal distribution, the regression model is  

                                                 ( )xy xY µ
σ
σ

ρµ −+=
1

2 .   (2.2)   

It is now easy to estimate ρ  and the slope parameter, 
1

2

σ
σ

ρ , by nonparametric 

methods.  The slope parameter is estimated as an intercept in a regression that uses 
the elementary slopes as the dependent variable; see equation (2.1).  The correlation 
coefficient is estimated using both the slope and intercept in this regression.  
 
For a complete development of the work that follows, the reader is referred to 
problem 1.2.14 in Randles and Wolfe (1979, p. 12) and papers 1 through 7 at the web 
site.  A synopsis of necessary material follows.   
 
Let ),( yxrp  be the notation for the calculation of Pearson’s correlation coefficient on 

a set of data ),( yx .  Let GD be the Greatest Deviation correlation coefficient (Gideon 
and Hollister 1987) and ),( yxGD  its value on a set of data.  For simple linear 
regression, the least squares estimate of slope is obtained by solving for b in the 
equation 0),( =− bxyxrp ; that is, by making the correlation between the independent 
variable and the uncentered residuals zero.  The GD slope estimate is similarly 
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obtained by solving 0),( =− bxyxGD .  In fact any correlation coefficient can be 
used in this manner as explained in Gideon (1992) and Gideon and Rummel (1992).  
That is, for any correlation coefficient r, solve for b in  
                  
                                                       0),( =− bxyxr . (2.3) 
 
This same type of correlation coefficient equation is used for location and scale 
estimation in (2.1) (Gideon and Rothan 2004).  The form of the equation remains the 
same; only the arguments change.  In this correlation method of estimation, scale 
must be estimated first and then location.   Whereas the original sample size is n, the 

sample size of the elementary slopes is 
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 and let q be the ordered 

quantiles corresponding to equally spaced probabilities from the assumed 
distribution: the integers 1 through m each divided by m + 1. Here q comes from the 
standard Cauchy, 0R , distribution.  These quantiles are paired with ordered sample 
data.   
 

Let vector v be the ordered set of elementary slopes 
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size m, defining q above, is 2/)1( −nn .  Then an estimate of scale using pr  is found 

by solving for s in 0),( =− sqvqrp , where v  equals the vector of ordered slopes.  

The location estimate comes from taking the mean of sqv − .  Classical methods are 
not valid for the Cauchy distribution; the method used here is similar to that in 
Randles and Wolfe (1979, problem 1.2.14, p. 12) except that the work is defined 
through correlation coefficients and uses the ordered data.  For a robust and valid 
estimate of scale based on GD, solve for s in 0),( =− sqvqGD .   The location 
estimate comes from taking the median of sqv − .  The general scale equation for any 
correlation coefficient r using ordered quantiles corresponding to the ordered data is  
 
                                          0))(,( =− sqdataorderedqr  (2.4) 
 
The same numerical routines used in (2.3) suffice to solve for s in equation (2.4).   
 

The estimate of the slope parameter, 2

1

2 1 ρ
σ
σ

− , in (2.1) is the solution s in (2.4).  

The estimate of the location parameter,
1

2

σ
σ

ρ , in (2.1) is the median of sqv − ; call 

this estimate c.  Alternatively stated, the estimate of the regression slope parameter 

1

2

σ
σ

ρ  in (2.2) for the original data comes from the intercept estimate c in (2.1) where 
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the elementary slopes are the dependent variable.  Since s estimates 2
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2 1 ρ
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c estimates 
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ρ , the ratio u of s to c estimates 
ρ

ρ 21 −
.  The equation,  
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 = u, is now solved for ρ ; so the estimate of ρ  is )(
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csign
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.  By 

dividing c by this estimate of ρ , one has an estimate of the ratio of the standard 

deviations 
1

2
σ
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3. Regression Estimation using Kendall’s τ  and Elementary Slopes   
 

The basic regression estimation equation for Kendall’sτ is equation (2.3) with 
τ replacing r, 0),( =− bxyxτ , and solve for b.  For fixed b the concordances and 
discordances are counted from the signs for all pairs of indices (i, j), i< j, of  
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.  If a plot is made of b against ),( bxyx −τ , it is a 

monotonic decreasing step function that only decreases at each elementary slope.  
The function ),( bxyxGD −  behaves in a similar manner except it decreases at some 
but not all of the elementary slopes thus assuming fewer values. 

 
 
4. Illustration by Simulation of the Estimation in Regression by Correlation Coefficients 

and Elementary Slopes                                                                                                                                                                                                                                                                                                                        
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 where n is 

the original sample size.  For 100,30,10=n , the number of elementary slopes is 990, 
94,395 and 12,248,775, respectively.  The computer language C routine used in 
solving equation (2.1) or (2.4) for GD uses these elementary slopes as the data.  The 
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routine does a systematic search on these elementary slopes; and so for n greater than 
30 or so, it is overwhelmed.   However, a feature of equation (2.4) allows good 
estimation when the ordered data is truncated at each end.   
 
 
Computer simulations demonstrate the practicality of these methods. Two types of 
data were considered: (1) bivariate normal (BN) and (2) bivariate normal with some 
outlier contamination in the Y variable to demonstrate the robustness of GD and 
Kendall’sτ methods. This outlier data was limited to a random amount; namely, the 
number of outliers in each sample was binomial with n equal to the sample size and 
probability of 0.20 for outliers.  The outliers were generated from a N(0, 5) 
distribution.  For each case (BN and BN with Outliers), sample sizes of n = 20 and  
n = 100 were used and 1000 simulations were run.   
 

Estimates of the slope parameter in the BN, 
1

2

σ
σ

ρ , were obtained using three 

methods: (1) the usual least squares or, in correlation language, Pearson’s r estimate, 
(2) Kendall’s τ method, and (3) the GD method on the elementary slopes.  Estimates 
of the correlation parameter ρ  were obtained by: (1) the usual Pearson’s r, (2) the 
GD regression using the elementary slopes and taking the ratio of the slope to the 
intercept and then using u as detailed in Section 2, and (3) the greatest deviation using 
the normal transformation )2/sin( GDπ , see Gideon and Hollister (1987).  The means 
and standard deviations for the estimators in the simulations are given in Tables I – 
VIII below.   
 
Table IX displays a summary of the GD estimate of the standard deviation of the 
original x-data found by using equation (2.4) and normal quantiles.  
 
Following the tables, a short discussion of the principle results is given. 



 

Elementary Slopes   6/23/2004   10:31 AM -8- 

 
 Table I             Estimation of Slope, no outliers, n=20 and 1000 simulations each                 
parameter →  
Method ↓  

 0 1.0 1.5 1.8 

τ  mean -0.0036 1.0163 1.5057 1.7926 
 SD 0.5224 0.4625 0.3468 0.2388 
LS or P mean -0.0051 1.0128 1.4997 1.7921 
 SD 0.4746 0.4129 0.3191 0.2157 
GD with the mean -0.0038 1.0193 1.5061 1.7949 
elem slopes SD 0.5526 0.4824 0.3705 0.2568 

 
 

Table II           Estimation of Slope, with outliers, n=20 and 1000 simulations each           
parameter →  
Method ↓  

 0 1.0 1.5 1.8 

τ  mean 0.06197 0.9819 1.4942 1.7827 
 SD 0.7969 0.6835 0.5039 0.3271 
LS or P mean 0.06221 0.9678 1.5209 1.7654 
 SD 1.1451 1.0427 0.7406 0.5037 
GD with the mean 0.06442 0.9624 1.5061 1.7779 
elem slopes SD 1.1026 0.9406 0.6758 0.4441 

 
 

Table III       Estimation of Correlation ρ , no outliers, n=20 and 1000 simulations  
parameter →  
Method ↓  

 0 0.5 0.75 0.90 

LS or P mean -0.0015 0.4910 0.7387 0.8940 
 SD 0.2264 0.1666 0.1115 0.0487 
GD with mean -0.0150 0.4856 0.7309 0.8883 
elem Slopes SD 0.2593 0.1826 0.1283 0.0579 
GD with the mean 0.0002 0.4284 0.6586 0.8125 
sine transf SD 0.2704 0.2283 0.1694 0.1129 

 
 

Table IV     Estimation of Correlation ρ , with outliers n=20, and 1000 simulations     
parameter →  
Method ↓  

 0 0.5 0.75 0.90 

LS or P mean 0.0116 0.2553 0.4686 0.6692 
 SD 0.2269 0.2394 0.2090 0.1798 
GD with mean -0.0124 0.3518 0.5556 0.7579 
elem Slopes SD 0.2807 0.1977 0.1950 0.1441 
GD with the mean 0.0222 0.3496 0.5725 0.7237 
sine transf SD 0.2745 0.2397 0.1873 0.1486 
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The standard deviation parameter of the X variable was “3” and did not change over 
the simulations.  Only the Y variable was contaminated by outliers as described 
earlier.  For sample size 20, the sample mean of the 1000 simulations of the GD 
estimate of the standard deviation parameter of X was usually about 3.09 with a 
sample standard deviation of 0.64.  There apparently is a slight upward bias.  Stated 
another way, the estimate ±  two standard errors is 3.09 ±  0.04. 
 

Table V            Estimation of Slope, no outliers n=100, and 1000 simulations each            
parameter →  
Method ↓  

 0 1.0 1.5 1.8 

τ  mean 0.0003 1.0108 1.5032 1.8012 
 SD 0.2149 0.1860 0.1428 0.0929 
LS or P mean 0.0016 1.0114 1.5008 1.7994 
 SD 0.2051 0.1783 0.1369 0.0877 
GD with the mean 0.0004 1.0106 1.5032 1.8011 
elem slopes SD 0.2149 0.1858 0.1428 0.0929 

 
 
 

Table VI        Estimation of Slope, with outliers n=100, and 1000 simulations each        
parameter →  
Method ↓  

 0 1.0 1.5 1.8 

τ  mean -0.0023 0.9865 1.4986 1.8007 
 SD 0.2889 0.2494 0.1905 0.1307 
LS or P mean -0.0054 0.9697 1.4945 1.7986 
 SD 0.4798 0.4109 0.3108 0.2115 
GD with the mean -0.0023 0.9862 1.4985 1.8007 
elem slopes SD 0.2888 0.2493 0.1904 0.1307 

 
 

Table VII     Estimation of Correlation ρ , no outliers n=100, and 1000 simulations     
parameter →  
Method ↓  

 0 0.5 0.75 0.90 

LS or P mean 0.0010 0.5019 0.7458 0.8992 
 SD 0.1011 0.0769 0.0448 0.0188 
GD with mean 0.0043 0.5049 0.7466 0.8999 
elem Slopes SD 0.1068 0.0904 0.0623 0.0276 
GD with the mean 0.0033 0.4780 0.7181 0.8744 
sine transf SD 0.1327 0.1077 0.0736 0.0405 
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Table VIII Estimation of Correlation ρ  with outliers, n=100 and 1000 simulations  
parameter →  
Method ↓  

 0 0.5 0.75 0.90 

LS or P mean -0.0010 0.2318 0.4346 0.6554 
 SD 0.0990 0.0984 0.0960 0.0808 
GD with mean 0.0040 0.3886 0.6382 0.8318 
elem Slopes SD 0.1058 0.1024 0.0827 0.0510 
GD with the mean 0.0016 0.4014 0.6247 0.7909 
sine transf SD 0.1296 0.1113 0.0878 0.0593 

 
For these runs of sample size 100, the sample mean of the 1000 simulations of the 
GD estimate of the standard deviation parameter of X was usually about 3.02 with a 
sample standard deviation of 0.266.  Thus the increased sample size reduced the bias.  
Here the estimate ±  two standard errors is 3.02 ± 0.02.   
 
A general summary of the results now follows. For both outlier and no outlier data, 
two sample sizes are used, 20 and 100.  For the sample size 100, the GD method on 
the elementary slopes (GD-ES) used the middle 100 elementary slopes for the 
regression in equation (2.4).  These middle 100 elementary slopes (50 on each side of 
the median of the elementary slopes) are paired with the middle 100 Cauchy 
quantiles.  It would seem that this data reduction would be detrimental to the 
estimation process, but the results seem little influenced by this reduction. 
 
From Tables I and V, no outliers, all methods are nearly unbiased for the slope 
parameter.  The GD-ES and τ methods are very comparable and only marginally less 
effective than the least squares method in terms of slightly larger variation. 
 
From Tables II and VI, with outliers, for n = 20, the best method for the slope is τ , 
then comes GD-ES, and finally LS.  For n = 100, GD-ES and τ are nearly the same 
and quite superior to LS.  

 
From Tables III and VII, no outliers, in the estimation of ρ , the GD-ES method 
appears unbiased for all correlations.  GD-sine is unbiased near 0, but underestimates 
for larger ρ .  LS and GD-ES are fairly comparable with respect to variation.   
 
From Tables IV and VIII, with outliers, in the estimation of ρ , GD-ES has 
substantially less bias for all ρ  and for ρ  > 0 less variation and is preferable to 
Pearson’s r.  Except near 0, GD-sine is also preferable over the classical method.   
 
From Table IX the estimation of the standard deviation of X by the GD method via 
equation (2.4) is seen as slightly biased.  Some results are taken from Fraser (1976) to 
aid in a comparison.  Let s be the usual classical standard deviation and sgd be the GD 
estimate.  Then we use  
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1)
)1(4

1
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n
sE σ  and 22 ))(()()( sEsEsV −= to construct the following table. 

Table IX              Comparison of the Standard Deviation of X                                         
E(s) = 2.961 SD(s) = 0.4821 σ =3, n=20 E(sgd) ≅  3.09 SD(sgd) ≅  0.64 
E(s) = 2.9924 SD(s) = 0.2134 σ =3, n=100 E(sgd) ≅  3.02 SD(sgd) ≅  0.266 

            

 
The values for s are from Fraser (1976).  The values for sgd are estimates from the 
1000 simulations.   
 

5. A Further Note on Estimation with Fixed Regressor Variable Data 
 
Equation (2.3) can be used to estimate the slope and intercept in a simple linear 
regression with any correlation coefficient.  This is detailed in the simple linear 
regression papers (Gideon 1992, Gideon and Rummel 1992).  Simple linear 
regression has been carried out many times using GD.  As in classical simple linear 
regression, the residuals can be computed.  However, the regression standard error is 
computed by using equation (2.4) with q being normal quantiles and the ordered data 
the ordered residuals.  The slope of the line is the standard error of the regression fit.  
In the same manner as normal theory or classical methods, the estimates of residual 
standard error and the standard deviation of y can be used to compute a “regression 
correlation coefficient,”  

2

2
|1ˆ
y

xy

s

s
−=ρ .  The “s” statistics all come from GD methods.  This method is detailed 

in Gideon and Miller (1992).  
 
If the error is Cauchy in the fixed-x model, the GD method using Cauchy quantiles 
will give regression parameter estimates as well as location and scale estimates of all 
the involved parameters.  In addition, estimation of parameters with the bivariate 
Cauchy can also be carried out.  In these situations, of course, classical methods 
cannot be used.   
 

6. A Final Summary  
 

This paper illustrates some interesting facts about the use of elementary slopes in 
simple linear regression.  A rank-based correlation estimator, GD, was used on the 
elementary slopes to demonstrate that the Cauchy distribution can be profitability 
used in estimation.  With outliers distributed symmetrically, both Kendall’sτ and GD 
operating on the original data and GD operating on the elementary slopes of the 
bivariate data are shown to be robust.   
 
It appears that researchers in estimation have previously overlooked the Cauchy 
distribution, but this paper has shown that the Cauchy distribution is essential in the 
estimation procedure in bivariate normal situations.   
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This work is an extension of an entire system of estimation based on any correlation 
coefficient and, in particular, on nonparametric correlation coefficients.  Several 
papers exploring this system are available on the web site.  It is hoped that more of 
the web site material will be published and the web site material enlarged to show 
more of the methodology of the correlation coefficient system of estimation.  The 
main computer programs are written in C code and are interfaced with the S-Plus 
statistical package.  
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Appendix:  An Example of the Process Using Bivariate Normal Data with  
Some Contamination in the Y variable. 

 
In this example, a sample of size 20 was generated from a bivariate normal distribution 
with parameters 6.0 and,6,6,3,5 ===== ρσµσµ yyxx with the Y variable subject to 
random outlier contamination; the number of outliers was binomial with n equal to 20 
and the probability of 0.2 for outliers.  In this run, five outliers were generated from a 
N(0, 5) distribution.  Only three of these five outliers are apparent on the scatterplot of 
the data.  The data and the middle 20 elementary slopes out of the 190, 20 choose 2, are 
given below. 
 
Figure 1 displays the scatterplot and three regression lines: the classical least squares, the 
ordinary GD regression line from (2.3), and the GD elementary slope regression line 
from (2.4), the darkest line. 
 
Figure 2 shows a plot of 101 ordered elementary slopes, order statistics 46 to 146, versus 
the corresponding quantiles for the standard Cauchy.  These 101 order statistics of 
elementary slopes were used as the dependent variable and the corresponding quantiles 
for the standard Cauchy random variable as the regressor variable in (2.1).  The slope of 
this regression line is the solution s to (2.4); here s = 2.0485.  The intercept of this 
regression line is the median, c, of the uncentered residuals, namely c =1.5708.  The GD 
elementary slope estimate of ρ is 0.6085. 
 
Thus the GD elementary slope regression line, for the original data, shown in Graph 1 is 

XY 5708.1564.3 +−= .  The intercept, c, of the regression line in Graph 2 is the estimate 
of the slope and median of )5708.1( xy −  using the original data is the intercept. 
 
A summary of the three fits is now given in the form Method(intercept, slope): 
LS (-10.76, 2.13); GD (-4.22, 1.73); GD on elementary slopes (-3.564, 1.5708).  The two 
GD methods are very similar and preferable to the LS method.   
 
The theoretical regression line, without outliers, was xYE 2.1)( =  with the standard 
deviation of the residuals being 4.8.  The correlation parameter was 0.6.  The GD 
elementary slope method of estimating correlation was excellent in this example, and the 
slope estimate was superior to the classical least squares method and the ordinary GD 
regression.   
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Figure 1 

 
 
 
The ordered x-data:    
  -1.12515065 -0.06094178 -0.60768302 0.46794319 3.68813456 

4.10270239 4.37505686 4.50201012 4.94726900 5.72811198 
5.99845688 7.11044077 7.59002677 8.34436002 8.53905350 
8.55759799 8.80890911 8.90513910 8.95517566 9.38513190 

 
The corresponding y-data:    
   -5.7732964 -45.6719067 0.7431537 -1.5227881 -2.9523418 

6.9241551 -0.5675762 6.6362350 -15.3101496 3.9947963 
10.5330247 9.0918245 5.9374006 13.5577737 14.5609510 
14.7592589 0.9640291 4.0345965 -16.3929683 11.6197997 

 
The middle 20 elementary slopes:   

1.291506 1.339262 1.343713 1.425320 1.473849 
1.484517 1.524588 1.563921 1.585425 1.597985 
1.606721 1.615651 1.626274 1.651427 1.654865 
1.721414 1.758763 1.801382 1.804985 1.903659 
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Figure 2 

          
  
 
 
 
 
 
 

 


