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In abivariate data plot, every two points determine an “elementary slope.” For n points
with distinct x-values, there are n(n — 1)/2 elementary slopes. These elementary slopes
are examined under the two classical regression assumptions: (1) the regressor variable
values are fixed and the error is independent and normal, and (2) the datais bivariate
normal. For case (1), it is demonstrated that a weighted average of the elementary slopes
givesthe standard least squares estimate. 1n case (2), it is shown that the eementary
dopes have arescaled Cauchy distribution; this Cauchy distribution is then used to
estimate bivariate normal parameters. Two nonparametric correlation coefficients,
Kendall’st and the Greatest Deviation correlation coefficient (GD), are used with
elementary slopesin regression estimation. Simulations show the robustness of the
nonparametric method of estimation using Kendall’st and GD.

Keywords. bivariate normal, Cauchy distribution, Kendall’s t , Greatest Deviation
correlation coefficient

Thiswork dependsin part on earlier unpublished work of Gideon and is available on his
web site: www.math.umt.edu/gideon. Some of the references will refer to papers posted
at thisweb site.

1. Simple Linear Regression with fixed regressor variable data

L et the regression equation model be y =a + bx + e, errorsindependent with
V(e)=s 2 and E(e) =0. Let {(x,y,)]i =1 2,3,..., n} bethedatawith distinct x-

values. Then the set of n(n-1)/2 elementary slopes are % ij _ ))(/i gl 1 j. According
1X -

] 1

to the mode,
Y- ¥ _(@a+bx +e))- (@ +bx +e) Cpa 8T8
Xim % o % Xj - X

BecauseE(e, - €) =0, each slopeisunbiased forb. Also
Vaé(j'YiQ:V(ej'ei)_ x?

Xj- X (Xj' Xi)2 _(Xj' Xi)2

. In U-Statistics methods (Randles and Wolfe

1979), it would be suggested that the ?;g elementary slopes be averaged to obtain an
@

unbiased estimate. However, thisis dightly changed here by taking aweighted
average with the weights being the reciprocals of the variances of the elementary
slopes.
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Lemma 1. The weighted average of the elementary slopes gives the usual least
sguares estimate of the slope.

Proof: Let A bethe ?;gsetof indices (i, j), i j. Thenthe sum of theweights Wis
a

. 1 o n ¢ —
givenby: W=—— q(x;- x)* = =2 a(x-x)?. (1.1)
(i,i)eA i=1

Result (1.1) isrelated to one-sample U-statistics (Randles and Wolfe 1979, pp. 61-63)
and follows from the demonstration of the equality (1.2), shown below, wheny is
taken as x.

For distinct x-valuesand i ! j, the weighted-average estimate is
BZLé y,' Yi (Xj_xi)z
W(ij)eAX" x 257

g}

-y). (1.2

a (y; - yi)(X
W$ was 2 (i,j)eA l

Finally, substituting for W gives:

ém-i)(yi- y)
- N8 -0 Y) =
A(x -2 ® = a(x-n»

i=1 i=1

To demonstrate equality (1.2), an exampleis shown for n =4. Thenthe set Ahas 6
points; A={(1,2),(13),(% 4),(23).(24), (3 4)}.

o g $ & g &
aly;-y)x-x)=3axy-aaxy-aayx

(i,j)eA i=1 i=1 j=i+l i=1 j=i+l

4
Add and subtract é XY, sothat

i=1

4 3 4 3 4 4
a(yj-yi)(Xj-Xi):4a>§>’i'aa&yj-aayij'a&yi
@i,j)eA i=1 il j=i+l i=1 j=i+l i=1
o s g s g 3
:4axiyi (aa)(ly,+aay|xj+a)(ly|) (13)
|—1J i+l I—l] i+1 i=
3 3
Note that (a x)(a Yi )—a>9y.+a axy,+a a YiX,
i=1 j=1 i=l j=i+l i=l j=i+l

S0 (1.3) becomes

é. (Y- ¥)x - %) = 45. XY - (é. Xi)(é. Y;)

(i.i)eA i=1 i=1 j=1

24a XY - (a x)(a Yi )u—

e i=1 i=1 j=1
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éd 1
=dea XY -~
Gi=1 4 i=1 j=1

4
Recognizing [] , above, as the computational form of é_ (x - X)(y, - y),yields

i=1

a (v, - v - x)=4a (% - %)y, - ¥).

(i.i)eA i=1

1 o 1.4 ¢
Th =V = X)) = — - X ___.
USWZSZU%M(y, W - %) = oz - X0 - Y)

Or for genera positive integer n,

1 o _1 n g — _
Wa(yj'yi)(xj'xi)__ iQ_l(xi'x)(yi'Y)-

(i.))eA Ws?

If not all x aredistinct, the formulas and equations will hold if when x =X ,
(Xj - Xi)2

X=X
J
must appear in the summations.

isinterpreted as zero sinceitslimit as X; - X, ® Oiszero. Theseterms

By extending the idea of a U-Statistic to a weighted average, it has been shown that
the classical least squares estimate of slope is aweighted average of elementary
slopes.

2. Simple Regression with Bivariate Normal Data

In this section, the data (X, Y) have a bivariate normal distribution. Again the
elementary dopes are analyzed, but now both the numerator and denominator are
random variables. It is shown that the elementary slopes for a bivariate normal
distribution have a Cauchy distribution. It is then shown how to use the Cauchy
distributed elementary slopes to estimate the regression parameters for the bivariate
normal.

d
The equal in distribution notation = defined in Randles and Wolfe (1979, p.13) is
used.

Lemma 2: The elementary Slopes for a Bivariate Normal Distribution have arescaled
Cauchy Didtribution.

Proof: Firgt, let ( X,Y) have a standardized bivariate normal distribution with
correlation coefficient r . Then for two independent observations (X,,Y,) and
(X,,Y,),letU =Y, -Y, andV = X, - X, sothat U/V =R (Rfor ratio) isthe
elementary slope. The random variable (U,V) hasabivariate normal distribution
with means O, variances 2, and correlation coefficient r . In order to obtain the joint
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distribution of (R, S), let R=U/V and S=U. Obtain thejoint distribution of (R, S)
and integrate out Sto obtain that the distribution of Ris Cauchy with location
parameter r and scale parameter 4/1- r 2. The density for Ris

f(r)= 1 , - ¥ <r<¥.

pﬁel+(r_r)2u

1-r

Let R denote this Cauchy with location parameter r and scale parameter 4/1- r 2.

Then the distribution of R = R isthe standard Cauchy. For the general

N

d d
bivariate normal, let X =N(m,s?), Y=N(m,s?) withcorrelation coefficient r .
It follows that
(Yl - Yz)
V2s
(Xl - xz)

d Y,-Y, ds,
2_=R, and that the elementary slope—:S—Rl. Lastly, a
1

X
Vas,

sample of elementary slopesisrelated to a standard Cauchy by

Yi-Y, $.5,.S,

=r
S

1-r?2 2.1)"
X.-X, s Ro (2.1)

1 1

In the case where(X, Y) has a bivariate normal distribution, the regression model is

Y:mj+rZ—2(x-mK). (2.2)

1

It isnow easy to estimate r and the slope parameter, r 52 , by nonparametric

S 1
methods. The dope parameter is estimated as an intercept in aregression that uses
the elementary slopes as the dependent variable; see equation (2.1). The correlation
coefficient is estimated using both the sope and intercept in this regression.

For a complete development of the work that follows, the reader is referred to
problem 1.2.14 in Randles and Wolfe (1979, p. 12) and papers 1 through 7 at the web
site. A synopsis of necessary material follows.

Let r,(x,y) bethe notation for the calculation of Pearson’s correlation coefficient on

aset of data (x,y). Let GD be the Greatest Deviation correlation coefficient (Gideon
and Hollister 1987) and GD (X, y) itsvalue on aset of data. For simple linear
regression, the least squares estimate of slope is obtained by solving for b in the
equation r,(x, y - bx) =0; that is, by making the correlation between the independent
variable and the uncentered residuals zero. The GD slope estimate is similarly
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obtained by solving GD (X, y - bx) =0. Infact any correlation coefficient can be
used in this manner as explained in Gideon (1992) and Gideon and Rummel (1992).
That is, for any correlation coefficient r, solvefor bin

r(x,y- bx)=0. (2.3)

This same type of correlation coefficient equation is used for location and scale
estimation in (2.1) (Gideon and Rothan 2004). The form of the equation remains the
same; only the arguments change. In this correlation method of estimation, scale
must be estimated first and then location. Whereas the original sample sizeisn, the

sample size of the elementary slopesis gg Letm= g’;g and let q be the ordered
a a

guantiles corresponding to equally spaced probabilities from the assumed
distribution: the integers 1 through meach divided by m+ 1. Here g comes from the

standard Cauchy, R,, distribution. These quantiles are paired with ordered sample
data.

Let vector v be the ordered set of elementary slopes |l i:j ] ){i El 1 j. Thesample
i

sizem, defining g above, is n(n- 1)/2. Then an estimate of scaleusing r,, isfound
by solving for sin r,(q,v - sg) =0, where v equalsthe vector of ordered slopes.

The location estimate comes from taking the mean of v- sg. Classical methods are
not valid for the Cauchy distribution; the method used hereis similar to that in
Randles and Wolfe (1979, problem 1.2.14, p. 12) except that the work is defined
through correlation coefficients and uses the ordered data. For arobust and valid

estimate of scale based on GD, solvefor sin GD(q,v- sq) =0. Thelocation
estimate comes from taking the median of v- sq. The general scale equation for any
correlation coefficient r using ordered quantiles corresponding to the ordered datais

r(q,ordered(data) - sq) =0 (2.4)

The same numerical routines used in (2.3) suffice to solve for sin equation (2.4).

The estimate of the slope parameter, 2—2,/1- r?,in(2.1) isthesolution sin (2.4).

1

The estimate of the location parameter, r S—Z, in(2.1) isthemedian of v- sq; call
S 1
thisestimate c. Alternatively stated, the estimate of the regression slope parameter

r 52 in (2.2) for the original data comes from the intercept estimate c in (2.1) where
1
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the elementary slopes are the dependent variable. Since s estimates 2—2 1- r % and

1
. s . . J1-r1?
c estimates r =2, theratio u of sto c estimates .
sl

. The equation,

1-r?2 . . .
=u, isnow solved forr ; sotheestimateof r is

1 sign(c). By
N1+u?

dividing c by thisestimate of r , one has an estimate of the ratio of the standard
deviations S / .
S 1

3. Regression Estimation using Kendall’st and Elementary Slopes

The basic regression estimation equation for Kendall’ st is equation (2.3) with
t replacingr, t (x,y - bx) =0, and solve for b. For fixed b the concordances and
discordances are counted from the signsfor al pairsof indices (i, j), i<j, of

yj'bxj'(yi'bxi):yj'yi

- b. For t (x,y- bx) =0, the number of concordant

X; - X X; = %
pairs must equal the number of discordant pairs and thisimplies b is determined so
-y 0 Y/ 0
that # Yi Y b<0:I= #gu- b > 0% Thisoccurswhen b isthe median of
XtX 5 &% b
? yj =Y P

the elementary slopes |

. g If aplotismadeof bagainst t (x,y- bx),itisa
i

monotonic decreasing step function that only decreases at each elementary sope.
Thefunction GD(X,y - bx) behavesin asimilar manner except it decreases at some
but not all of the elementary dopes thus assuming fewer values.

4. Illustration by Simulation of the Estimation in Regression by Correlation Coefficients
and Elementary Slopes

Inorder to estimatea =r 2—2 and b :z—%/l- r 2 in(2.1), the elementary sopes

1 1

} ij _ ii %are the data to be ordered and regressed in equation (2.4) against the

(IR

Cauchy quantiles, g. The elementary slopes for this data number égza_ wherenis
2 5

the original sample size. For n =10, 30,100, the number of elementary dopesis 990,
94,395 and 12,248,775, respectively. The computer language C routine used in
solving equation (2.1) or (2.4) for GD uses these elementary slopes asthe data. The
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routine does a systematic search on these elementary slopes; and so for n greater than
30 or so, it isoverwhelmed. However, afeature of equation (2.4) allows good
estimation when the ordered datais truncated at each end.

Computer simulations demonstrate the practicality of these methods. Two types of
data were considered: (1) bivariate normal (BN) and (2) bivariate normal with some
outlier contamination in the Y variable to demonstrate the robustness of GD and
Kendall’st methods. This outlier data was limited to a random amount; namely, the
number of outliersin each sample was binomia with n equal to the sample size and
probability of 0.20 for outliers. The outliers were generated from a N(0, 5)
distribution. For each case (BN and BN with Outliers), sample sizes of n =20 and

n = 100 were used and 1000 simulations were run.

. . s . .
Estimates of the dope parameter inthe BN, r =2, were obtained using three
S 1

methods: (1) the usual least squares or, in correlation language, Pearson’sr estimate,
(2) Kendall’st method, and (3) the GD method on the elementary dopes. Estimates
of the correlation parameter r were obtained by: (1) the usual Pearson’sr, (2) the
GD regression using the elementary sopes and taking the ratio of the dope to the
intercept and then using u as detailed in Section 2, and (3) the greatest deviation using
the normal transformation sin(pGD / 2) , see Gideon and Hollister (1987). The means
and standard deviations for the estimatorsin the simulations are given in Tables | —

VI below.

Table IX displays a summary of the GD estimate of the standard deviation of the
original x-data found by using equation (2.4) and normal quantiles.

Following the tables, a short discussion of the principle resultsis given.
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Tablel Estimation of Slope, no outliers, n=20 and 1000 simulations each
parameter ® 0 1.0 15 18
Method

t mean -0.0036 1.0163 1.5057 1.7926

SD 0.5224 0.4625 0.3468 0.2388
LSorP mean -0.0051 1.0128 1.4997 1.7921
SD 0.4746 0.4129 0.3191 0.2157

GD with the mean -0.0038 1.0193 1.5061 1.7949
elem slopes SD 0.5526 0.4824 0.3705 0.2568
Tablell Estimation of Slope, with outliers, n=20 and 1000 simulations each
parameter ® 0 10 15 18
Method

t mean 0.06197 0.9819 1.4942 1.7827

SD 0.7969 0.6835 0.5039 0.3271
LSorP mean 0.06221 0.9678 1.5209 1.7654
SD 1.1451 1.0427 0.7406 0.5037

GD with the mean 0.06442 0.9624 1.5061 1.7779
elem slopes SD 1.1026 0.9406 0.6758 0.4441
Tablelll Estimation of Correlationr , no outliers, n=20 and 1000 simulations
parameter ® 0 0.5 0.75 0.90
Method

LSor P mean -0.0015 0.4910 0.7387 0.8940

SD 0.2264 0.1666 0.1115 0.0487

GD with mean -0.0150 0.4856 0.7309 0.8883
elem Slopes SD 0.2593 0.1826 0.1283 0.0579
GD with the mean 0.0002 0.4284 0.6586 0.8125
sine transf SD 0.2704 0.2283 0.1694 0.1129

TablelVV  Estimation of Correlationr , with outliers n=20, and 1000 simulations

parameter ® 0 0.5 0.75 0.90
Method
LSorP mean 0.0116 0.2553 0.4686 0.6692
SD 0.2269 0.2394 0.2090 0.1798
GD with mean -0.0124 0.3518 0.5556 0.7579
elem Slopes SD 0.2807 0.1977 0.1950 0.1441
GD with the mean 0.0222 0.3496 0.5725 0.7237
sine transf SD 0.2745 0.2397 0.1873 0.1486
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The standard deviation parameter of the X variable was“3” and did not change over

the smulations. Only the Y variable was contaminated by outliers as described
earlier. For sample size 20, the sample mean of the 1000 simulations of the GD
estimate of the standard deviation parameter of X was usually about 3.09 with a

sample standard deviation of 0.64. There apparently isadight upward bias. Stated

another way, the estimate + two standard errorsis 3.09 + 0.04.

TableV Estimation of Slope, no outliers n=100, and 1000 simulations each
parameter ® 0 1.0 15 18
Method
t mean 0.0003 1.0108 1.5032 1.8012
SD 0.2149 0.1860 0.1428 0.0929
LSorP mean 0.0016 1.0114 1.5008 1.7994
SD 0.2051 0.1783 0.1369 0.0877
GD with the mean 0.0004 1.0106 1.5032 1.8011
elem slopes SD 0.2149 0.1858 0.1428 0.0929
Table VI Estimation of Slope, with outliers n=100, and 1000 simulations each
parameter ® 0 10 15 18
Method
t mean -0.0023 0.9865 1.4986 1.8007
SD 0.2889 0.2494 0.1905 0.1307
LSorP mean -0.0054 0.9697 1.4945 1.7986
SD 0.4798 0.4109 0.3108 0.2115
GD with the mean -0.0023 0.9862 1.4985 1.8007
elem slopes SD 0.2888 0.2493 0.1904 0.1307
TableVIlI  Egtimation of Correlationr , no outliers n=100, and 1000 smulations
parameter ® 0 0.5 0.75 0.90
Method
LSorP mean 0.0010 0.5019 0.7458 0.8992
SD 0.1011 0.0769 0.0448 0.0188
GD with mean 0.0043 0.5049 0.7466 0.8999
elem Slopes SD 0.1068 0.0904 0.0623 0.0276
GD with the mean 0.0033 0.4780 0.7181 0.8744
sine transf SD 0.1327 0.1077 0.0736 0.0405
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Table VIII Estimation of Correlationr with outliers, n=100 and 1000 simulations
parameter ® 0 0.5 0.75 0.90
Method
LSorP mean -0.0010 0.2318 0.4346 0.6554
SD 0.0990 0.0984 0.0960 0.0808
GD with mean 0.0040 0.3886 0.6382 0.8318
elem Slopes SD 0.1058 0.1024 0.0827 0.0510
GD with the mean 0.0016 0.4014 0.6247 0.7909
sine transf SD 0.1296 0.1113 0.0878 0.0593

For these runs of sample size 100, the sample mean of the 1000 smulations of the
GD estimate of the standard deviation parameter of X was usually about 3.02 with a
sample standard deviation of 0.266. Thus the increased sample size reduced the bias.
Here the estimate = two standard errorsis 3.02 + 0.02.

A genera summary of the results now follows. For both outlier and no outlier data,
two sample sizes are used, 20 and 100. For the sample size 100, the GD method on
the elementary slopes (GD-ES) used the middle 100 elementary slopes for the
regression in equation (2.4). These middle 100 elementary slopes (50 on each side of
the median of the elementary slopes) are paired with the middle 100 Cauchy
guantiles. It would seem that this data reduction would be detrimental to the
estimation process, but the results seem little influenced by this reduction.

From Tables| and V, no outliers, al methods are nearly unbiased for the slope
parameter. The GD-ESandt methods are very comparable and only marginally less
effective than the least squares method in terms of dightly larger variation.

From Tables Il and VI, with outliers, for n = 20, the best method for the dopeist
then comes GD-ES, and finally LS. For n=100, GD-ESand t are nearly the same
and quite superior to LS.

From Tables 111 and VI, no outliers, in the estimation of r , the GD-ES method
appears unbiased for all correlations. GD-sineis unbiased near O, but underestimates
for largerr . LSand GD-ES are fairly comparable with respect to variation.

From Tables 1V and VIII, with outliers, in the estimation of r , GD-ES has
substantially lessbiasfor all r andfor r >0 lessvariation and is preferable to
Pearson’sr. Except near 0, GD-sineis also preferable over the classical method.

From Table I X the estimation of the standard deviation of X by the GD method via
eguation (2.4) is seen as dightly biased. Some results are taken from Fraser (1976) to
aidinacomparison. Let s bethe usual classical standard deviation and sy,4 be the GD
estimate. Then we use
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1

E(s) @ (1+ an 1))'1 and V(s) = E(s?) - (E(s))?to construct the following table.
Table X Comparison of the Standard Deviation of X
s =3.m20 E(S) = 2.961 SD(9 = 0.4821
E(sy) € 3.09 SD(sya) € 0.64
o E(S) = 2.9924 SD(s) = 0.2134
s =3,n=100 E(Sy) € 3.02 SD(sy0) € 0.266

The valuesfor s are from Fraser (1976). The valuesfor sy are estimates from the
1000 simulations.

5. A Further Note on Estimation with Fixed Regressor Variable Data

Equation (2.3) can be used to estimate the slope and intercept in asimple linear
regression with any correlation coefficient. Thisis detailed in the simple linear
regression papers (Gideon 1992, Gideon and Rummel 1992). Simple linear
regression has been carried out many times using GD. Asin classical simple linear
regression, the residuals can be computed. However, the regression standard error is
computed by using equation (2.4) with q being normal quantiles and the ordered data
the ordered residuals. The slope of the line is the standard error of the regression fit.
In the same manner as normal theory or classica methods, the estimates of residual
standard error and the standard deviation of y can be used to compute a“regression
correlation coefficient,”

2
r=_1- S_y|2x . The*“s" satisticsal come from GD methods. This method is detailed

Sy

in Gideon and Miller (1992).

If the error is Cauchy in the fixed-x model, the GD method using Cauchy quantiles
will give regression parameter estimates as well as location and scale estimates of all
the involved parameters. In addition, estimation of parameters with the bivariate
Cauchy can also be carried out. In these situations, of course, classical methods
cannot be used.

6. A Fina Summary

This paper illustrates some interesting facts about the use of elementary slopesin
simple linear regression. A rank-based correlation estimator, GD, was used on the
elementary sopes to demonstrate that the Cauchy distribution can be profitability
used in estimation. With outliers distributed symmetrically, both Kendall’st and GD
operating on the origina data and GD operating on the elementary sopes of the
bivariate data are shown to be robust.

It appears that researchersin estimation have previously overlooked the Cauchy

distribution, but this paper has shown that the Cauchy distribution is essential in the
estimation procedure in bivariate normal situations.
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Thiswork is an extension of an entire system of estimation based on any correlation
coefficient and, in particular, on nonparametric correlation coefficients. Several
papers exploring this system are available on the web site. It is hoped that more of
the web site material will be published and the web site material enlarged to show
more of the methodology of the correlation coefficient system of estimation. The
main computer programs are written in C code and are interfaced with the S-Plus
statistical package.
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Appendix: An Example of the Process Using Bivariate Normal Data with
Some Contamination in the Y variable.

In this example, a sample of size 20 was generated from a bivariate normal distribution
with parametersm, =5,s , =3, m =6,s, =6, ad r =0.6withtheY variable subject to

random outlier contamination; the number of outliers was binomial with n equal to 20
and the probability of 0.2 for outliers. In this run, five outliers were generated from a
N(O, 5) distribution. Only three of these five outliers are apparent on the scatterplot of
the data. The data and the middle 20 elementary slopes out of the 190, 20 choose 2, are
given below.

Figure 1 displays the scatterplot and three regression lines. the classical least squares, the
ordinary GD regression line from (2.3), and the GD elementary slope regression line
from (2.4), the darkest line.

Figure 2 shows aplot of 101 ordered elementary slopes, order statistics 46 to 146, versus
the corresponding quantiles for the standard Cauchy. These 101 order statistics of
elementary slopes were used as the dependent variable and the corresponding quantiles
for the standard Cauchy random variable as the regressor variablein (2.1). The slope of
thisregression lineisthe solution sto (2.4); here s = 2.0485. Theintercept of this
regression lineis the median, c, of the uncentered residuas, namely ¢ =1.5708. The GD
elementary slope estimate of r is 0.6085.

Thusthe GD elementary slope regression line, for the original data, shown in Graph 1 is
Y =-3.564+1.5708X . Theintercept, c, of the regression linein Graph 2 is the estimate
of the dope and median of (y- 1.5708x) using the original datais the intercept.

A summary of the three fitsis now given in the form Method(intercept, slope):
LS (-10.76, 2.13); GD (-4.22, 1.73); GD on elementary sopes (-3.564, 1.5708). The two
GD methods are very similar and preferable to the LS method.

The theoretical regression line, without outliers, was E(Y) =1.2x with the standard
deviation of the residuals being 4.8. The correlation parameter was 0.6. The GD
elementary dope method of estimating correlation was excellent in this example, and the
slope estimate was superior to the classical least squares method and the ordinary GD
regression.
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Elementary Slope Example, Comparison Fits

fits are LS, GD, and GD elementary slopes

LS is lower line

The ordered x-data:

-1.12515065 -0.06094178
4.10270239 4.37505686
5.99845688 7.11044077
8.55759799 8.80890911

The corresponding y-data:

-5.7732964 -45.6719067
6.9241551 -0.5675762

10.5330247 9.0918245

14.7592589 0.9640291

The middle 20 elementary slopes.
1.291506 1.339262
1.484517 1.524588
1.606721 1.615651
1.721414 1.758763

Elementary Slopes

Figure 1

-0.60768302
4.50201012
7.59002677
8.90513910

0.7431537
6.6362350
5.9374006
4.0345965

1.343713
1.563921
1.626274
1.801382

6/23/2004

0.46794319
4.94726900
8.34436002
8.95517566

-1.5227881

-15.3101496
13.5577737
-16.3929683

1.425320
1.585425
1.651427
1.804985

10:31 AM

3.68813456
5.72811198
8.53905350
9.38513190

-2.9523418

3.9947963
14.5609510
11.6197997

1.473849
1.597985
1.654865
1.903659
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Elementary Slope plot,GD estimate of Slope is the Intercept
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Figure 2
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