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An important decision in most fields of research is whether two variables are related.

Pearson's correlation coefficient usually answers this question, but it lacks robustness and

depends on normality. Thus, inappropriate decisions can be made because of a few data

points skewing the conclusion.  This leads either to handling complex data by the dubious

process of throwing out a selected set of the data or using other correlation coefficients.

Spearman or Kendall can be used but neither seems to be as robust as the Greatest

Deviation Correlation Coefficient, which gives a reliable "second opinion," as illustrated

by the example presented.

1. INTRODUCTION

In the early 1980s Professor Rudy Gideon, the principal author of this paper, created a

new correlation coefficient based on the ranks of the data and a counting method. He

called it the Greatest Deviation Correlation Coefficient or GDCC. (For an example of the

calculation of this correlation coefficient see Appendix A; for an introduction to the

definition, some consequences and some examples, see Gideon and Hollister (1987).)

He and his students have continued working with this new statistic ever since. While the

body of knowledge grew in both depth and quantity, it has not been widely disseminated.
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An entire theory of regression, including nonlinear and generalized linear models,

starting with any correlation coefficient (rather than obtaining a correlation coefficient as

a side calculation) as well as scale and location statistics have been developed. This

approach has been extensively demonstrated with GDCC and somewhat with Kendall's

Tau. (The interested reader is invited to sample these revolutionary ideas by reading the

papers on the authors web site, www.math.umt.edu/gideon.)

This paper is purposefully expository and easy to read in order to focus on the idea that

GDCC is extremely valuable in analyzing data.   We illustrate why more than the

Pearson, Spearman, and Kendall CC's should be computed on bivariate data.

The data comes from the United States Department of Education and appeared in the

International Edition of USA Today on December 20, 1984. While one may initially feel

that this data set is too old to be relevant, the purpose of this paper is to illustrate a

powerful statistical tool, not to draw inferences about a particular data set.  However, data

of this type appears regularly in today's world. This was the first large data set analyzed

using GDCC; it was not contrived or sought after, but simply presented itself and most

unexpectedly, showed the value of GDCC as a "second opinion," which has now become

one of its primary uses.  Subsequently, a large number of data sets have been analyzed

and all results suggest that GDCC gives information above and beyond that of the

classical three correlation coefficients.
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2. ANALYSIS

The data is educational data from 50 states and Washington D.C.  State averages on five

variables related to high school education were recorded: (1) combined SAT scores,  (2)

high school graduation rate, (3) average teacher salary,  (4) pupil-teacher ratio, and (5)

average expenditures per pupil.  In such data, researchers may be interested in seeing if

there are relationships among these variables. This data cannot be considered independent

and identically distributed because each state is distinctive; for example, no information

on how the averages were made was given.  Because of this, a researcher should want to

treat each state with equal importance in searching for relationships; that is, no data

should be discarded.   The Greatest Deviation CC does treat data points on an equal basis

and it will be seen that GDCC can find that some variables are related and can find that

some are not in opposition to the decisions made by Pearson or Spearman or even

Kendall.  Thus, GDCC can help prevent both Type I and II errors. The data and the

correlations appear at the end of this paper and should be read prior to the discussion.

Table 1 shows the actual values of the correlation coefficients. In Table 2 are the

transformation values which allow the NPCCs to be more directly compared to Pearson's

correlation coefficient. This is a standard technique which can be done regardless of

whether the data is actually bivariate normal, so that if the data is normal all correlation

coefficients would estimate the same quantity. This is necessary because in general the

NPCC are estimating correlation quantities smaller than the correlation parameter of the

bivariate normal.
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Experience has shown that good data is characterized by all these correlation coefficients

having approximately the same significance.  It must be emphasized that the correlation

coefficients are estimating different quantities and only the significance levels should

agree, not the values themselves.  However, for problematic data, GDCC can have quite

different significance levels than the others.  Additionally, if the transformed GDCC as

given in Table 2 has a value greater than the Pearson correlation coefficient, then this

means that problematic data has devalued the Pearson correlation coefficient. This is so

with or without significance. The situation is reversed in the opposite direction: if GDCC

has a transformed value much less than Pearson's, a few points are inflating Pearson's.

The example illustrates these concepts.

The Pearson, Spearman, Kendall, and GD correlation coefficients were computed on the

ten pairs of variables and it was noted whether or not they were significant at the one and

five percent levels.  In the chart, the one percent significance level is denoted by double

asterisks and the five percent by a single asterisk.  Exact critical values were used for

Pearson and GDCC and asymptotic values for Spearman and Kendall.  For a data set with

n=51, in order for GDCC to have an exact 5% critical point, one rejects the null

hypothesis of independence (uncorrelated variables) if GDCC equals or exceeds 7/25

(Gideon and Hollister (1987)) and randomly rejects 58% of the time if it equals 6/25.  For

the 1% critical level, rejection is at 9/25 and rejection 76% of the time at 8/25.

In what follows the variables are referred to by their code numbers 1,2,3,4,5 defined

above. All four computed correlation coefficients agreed completely on six of the
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relationships: variable pairs (1,4), (1,5), (2,3), (3,4) were not related by all measures (all

four correlation coefficients showed nonsignificance) whereas  (3,5) and (4,5) were

related (all four correlation coefficients showed significance at the 1% level). For pair

(2,4) there was partial agreement as all the NPCCs were more significant than Pearson.

For pair (2,5) GDCC was more significant than the other three correlation coefficients,

again giving partial agreement.   However, a remarkable difference occurs for pairs (1,2)

and (1,3).  For (1,2), GDCC is not significant whereas the other three CCs are, but for

pair (1,3), GDCC is significant at the 5% level while none of the others are.  Which is

right?

In trying to answer this question, let us compare the accepted procedure of deleting points

and its effect on the analysis to using GDCC without the deletion of overly influential

points. Even though it seems capricious to delete some states for some pairs of variables

and different states for other pairs, this is probably the most common procedure in

practice. To do this, one studies bivariate plots and uses influence measures to delete data

of an unusual nature relative to the rest of the states.  If this is done, the data for GA, MN,

and WY are deleted for pair (1,3). This makes GDCC more significant and all the other

CCs significant.  Thus, three states masked a possible significant negative CC for three

measures; GDCC was the exception. Reliance on GDCC would possibly avoid a Type II

error without analyzing which data to remove.   For pair (1,2) the deletion of DC, IA,

MN, and SD makes GDCC even closer to zero and all three of the other CCs

nonsignificant.  In this case, three correlations are being made significant by just four

states and only GDCC gave a result pointing in the correct direction both before and after
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deleting data points; using it possibly avoids a Type I error.   Note that different states

were deleted for these two pairs, and hence, it is unclear what conclusion should be

drawn for all the data with three of the CCs.  In general, when psuedo outliers are deleted,

most times the other correlational analyses now agree with the original GDCC results.

GDCC makes the correlational analysis easy and allows reliable conclusions to be drawn.

A valid analysis of a data set should be based on consistent use of the data.

Researchers have complex multivariate data and sometimes not a lot of time.  While there

are many other robust analyses, GDCC analysis is quick and easy and gives good second

opinions; it also removes the necessity of deleting or weighting suspect data points. This

example makes it clear how a small segment of the data can lead one to dubious

conclusions.  Since Least Squares estimation techniques are closely related to the

Pearson's CC as shown in the simple regression paper available on the Web ("Correlation

in Simple Linear Regression," www.math.umt.edu/gideon), it is clear that without a

parallel robust NPCC analysis, many conclusions could be drawn some of which do not

fairly represent the data.

Thus, in our example only GDCC pointed to a possible relationship between teacher

salary and SAT scores, and it was negative.  To amplify the differences the GDCC

regression ("Correlation in Simple Linear Regression" on the web site) was run and gave

 S ˆ A T = 1130.84 − 0.008939 * teachersalary

whereas, Pearson's CC (slope and intercept same as least squares) gave

S ˆ A T = 1008.27 − 0.002906 * teachersalary.
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Note that for the 5% significant GDCC, its accompanying regression shows that an

increase of $1000 in average teacher salary points to a decrease of 8.9 in average SAT

score, but that Pearson's regression or least squares is nonsignificant and the

corresponding decrease is only 2.9.  The contradiction in higher salaries leading to lower

SAT scores lends itself to interesting speculation; one conclusion might be that such data

involving state averages shouldn't be used to draw inference about high school education.

3. BOOTSTRAP COMPARISON OF PEARSON AND THE GDCC

The two correlation coefficients, Pearson and the Greatest Deviation, were compared by

running bootstrap analyses using SPLUS.  These comparisons were done in order to

connect this new information with the familiar and as expected they confirm the above

comparsions.  The GDCC, because it is nonparametric, is applicable under a wider set of

assumptions than Pearson's correlation coefficient and so on that basis alone is more

robust.  However, the bootstrap confirms the two differences in inference about SAT and

teacher salary and also about SAT and high school graduation rate, and in, addition, gives

also the standard error and BCA (biased corrected and accelerated method).

First, the case of SAT and average teacher salary is considered. Recall that in this case

GDCC is significant but the other three correlation coefficients are not. In this data the

correlations were negative and the upper 5 % and 2.5% points reveal if there is

significance.  The upper bootstrap 5% and 2.5% points were -0.12 and -0.08 respectively

for GDCC and 0.08 and 0.12 for Pearson; thus, Pearson's included zero in the confidence
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interval. The SEs on the mean were 0.1124 for GDCC which was less than the 0.1404 for

Pearson.

The other case is that of SAT and high school graduation rate. Here the three well-known

correlation coefficients are all significant but GDCC is not.  The correlations are all

positive so the lower bootstrap 2.5% and 5% points determine significance.  The lower

2.5% and 5% points were -0.8 and -0.04 for GDCC,  0.14 and 0.18 for Pearson.  The SEs

for the mean were nearly the same: 0.1265 for GDCC and 0.1292 for Pearson.

4. CONCLUSION

Although only an example is presented here, numerous data sets have been examined

over many years and the discerning character of GDCC as a valuable second opinion has

held up.  In a paper accepted for publication, "The Correlation Coefficients," the

definitions of yet other correlation coefficients that could also provide better bivariate

analysis are found. The asymptotic distribution and an area interpretation of GDCC

appear in Gideon, Prentice and Pyke (1989); GDCCn *  is asymptotically )1,0(N , but n

should be at least 100 for a good approximation.  GDCC is easy to compute by hand for

small to medium sample sizes and examples appear in Appendix A and in Gideon and

Hollister (1989). The SPLUS or R code for GDCC is given in Appendix B. It is given in

two subroutines. The routine GDave is a function of the x and y data and returns GDCC.

The routine rguniq is called by GDave.  It gives the value of GDCC for a distinct set of y-

ranks which correspond to the ordered x-data and is a function only on the y-ranks.
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A unique  — one method handles all cases — technique, rather than the usual local

average rank method handles tied values.  This method averages two calculated

correlation coefficients and makes a value available for all cases and for many sorts of

correlational analyses.  For example, if all components of data vector x are the same, then

this averaging method yields a GDCC value of zero, meaning no information rather than

no relationship, because the two intermediate values are +1 and -1. These intermediates

are the maximum and minimum possible correlation within the tied value restrictions.

See Gideon and Hollister (1987). This is built into the computer programs in Appendix B.

This tied value procedure can be used for all rank-based correlation coefficients, thereby

making the calculations more consistent and not reliant on judgment calls.

5. APPENDIX A: A Hand Calculation of GDCC.
x ranks y ranks column 3 reverse y ranks column 5
1 5 1 2 1
2 6 2 1 0
3 4 3 3 0
4 1 2 6 1
5 3 1 4 1
6 2 0 5 0
maxima 3 1

GDCC is calculated by example.  The data are in columns 1 and 2, listed in order of the x

ranks, and column 4 contains n+1- rank(y). For each x rank, a number in each of

columns 3 and 5 is computed.  At x rank 4 for example, 2 appears in column 3 because

from {5,6,4,1}, the y ranks at or above the fourth x rank, only 5 and 6 (2 values) are

strictly greater than the fourth x rank. There is a 1 in column 5 because from the reverse

ranks, {2,1,3,6}, only one value (6) is strictly greater than 4.  GDCC = (max(col 5) -

max(col 3))/(greatest integer in n/2). Here this is (1-3)/3 = -2/3.
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APPENDIX B: S-PLUS or R programs for the Calculation of GDCC

1. rguniq: Computes GDCC for the unique ranks of y where y has been sorted relative
to x .

2. GDave: For any set of bivariate data, this routine computes two values of GDCC and
averages them for a unique result.  ccp is the value of GDCC computed so that ties
are broken to achieve maximum positive correlation.  ccn is the value of GDCC
computed so that ties are broken to achieve the least positive correlation.  Both ccp
and ccn call rguniq.

1. rguniq <-
function(rky)
{ n <- length(rky); n1 <- n-1

dy <- NULL; dyn <- NULL
ryr <- n + 1 - rky
for(i in 1:n1){

dy <- c(dy, sum(rky[1:i] - i > 0))
dyn <- c(dyn, sum(ryr[1:i] - i > 0))}

mdyr <- max(dyn)
mdy <- max(dy)

corrg <- (mdyr - mdy)/(n %/% 2)
corrg  }

2. GDave<-function(x,y)
{ n <- length(x)
    xt<-x[order(y,x)] #x order by y with y ties ordered by x
        rky<-1:n
        rky<-rky[order(xt,rky)]    # ranks of y ordered by x
        ccp  <- rguniq(rky)   # GD positive
# GD negative below

xrr <-  n +1 -rank(x)  #reverse ranks on the x
xt <- x[order(y,xrr)]  #x ordered by y with y ties ordered by rev(x)
rky <- order(xt,n:1)   #ranks of y ordered by x with y ties
ccn <- rguniq(rky)            #ordered by rev(y)

         (ccp+ccn)/2  }
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7. TABLES

Recall that the codes for the five variables are:
(1) combined SAT scores,  (2) high school graduation rate, (3) average teacher salary,
(4) pupil-teacher ratio, and (5) average expenditures per pupil.

Table 1:Correlations in the Education Data
variable CC 2 3 4 5

Pearson .4104** -.1465 -.0878 -.1577
       1 Spearman .3980** -.1711 -.1672 -.1354

Kendall .2792** -.1122 -.1208 -.0917
GDCC .1800 -.2400* -.0400 -.0800

Pearson .0970 -.2804* .1614
        2 Spearman .0824 -.4356** .3056*

Kendall .0486 -.2752** .2102*
GDCC .1400 -.3400** .3200**

Pearson -.0126 .8273**
        3 Spearman .0891 .7336**

Kendall .0627 .5372**
GDCC .0400 .5600**

Pearson -.4778**
        4 Spearman -.4850**

Kendall -.3388**
GDCC -.3600**

NOTE: The Critical Values for the Correlation Coefficients in Table 1
     Correlation   Coefficient                  Two-sided critical values ( n= 51)

         5% : one star (*)          1% : two stars ( **)
Pearson              .279                 .361
Spearman              .277                 .364
Kendall              .188                 .247
GDCC        7/25: 6/25 (.58) 9/25: 8/25 (.76)
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Table 2: Transformations of the Correlations
variable CC 2 3 4 5

Pearson .4104 -.1465 -.0878 -.1577
       1 Spearman .4137 -.1789 -.1748 -.1416

Kendall .4246 -.1753 -.1886 -.1435
GDCC .2789 -.3681 -.0628 -.1253

Pearson .0970 -.2804 .1614
        2 Spearman .0863 -.4522 .3186

Kendall .0763 -.4189 .3242
GDCC .2181 -.5090 .4817

Pearson -.0126 .8273
        3 Spearman .0932 .7494

Kendall .0983 .7472
GDCC .0627 .7705

Pearson -.4778
        4 Spearman -.5025

Kendall -.5074
GDCC -.5358

NOTE: If ρ is the population correlation coefficient for normally distributed data,
then the following transformations make the correlation coefficients directly comparable:

Spearman: ˆ ρ = 2sin(
πrs

6
)  Kendall: )

2
sin(ˆ krπ

ρ =  GDCC: )
2

sin(ˆ gdrπ
ρ =
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Table 3: The Educational Data
State SAT graduation teacher pupil/teacher expenditures

(1) rate (2) salary (3) ratio (4) per pupil (5)
AL 970 64.4 17948 20.3 2177
AK 914 77.8 34510 13.2 7325
AZ 978 68.4 21119 19.5 2524
AR 1003 76.2 15310 18.2 1971
CA 897 75.1 23614 23.3 2733
CO 979 79.2 23276 18.6 3171
CT 904 77.9 21036 14.8 3636
DE 902 88.9 20625 17.5 3456
DC 823 58.4 25610 17.2 4260
FL 890 65.5 18275 17.8 2680
GA 822 65.9 13040 18.6 2169
HI 869 82.2 24319 22.9 3239
ID 992 77.9 17605 20.7 2052
IL 981 77.1 22972 18.0 3100
IN 864 78.3 20347 19.8 2414
IA 1089 88.0 19402 15.7 3095
KS 1051 82.5 18313 15.6 3058
KY 997 68.4 18384 20.2 2100
LA 980 57.2 18416 18.4 2739
ME 892 76.7 16248 19.5 2458
MD 897 81.4 22800 18.3 3445
MA 896 77.5 21841 16.1 3378
MI 976 73.4 25712 21.9 3307
MN 1020 90.7 22876 18.0 3085
MS 992 63.7 14320 18.6 1849
MO 981 76.2 17521 17.4 2468
MT 1034 83.1 19702 16.0 3289
NE 1041 84.1 17399 15.5 2984
NV 931 74.6 22067 20.9 2613
NH 931 76.5 16549 16.4 2750
NJ 876 82.7 21536 15.8 4007
NM 1014 71.4 20187 18.8 2901
NY 894 66.7 25000 18.8 4686
NC 827 69.3 17585 19.8 2162
ND 1054 94.8 18774 16.6 2853
OH 968 82.2 20004 19.8 2676
OK 1009 79.6 18270 17.0 2805
OR 907 73.0 21746 18.6 3504
PA 887 79.7 21178 17.2 3329
RI 885 75.2 23175 15.7 3570
SC 803 66.2 16523 18.9 2017
SD 1086 85.0 15592 15.5 2486
TN 1009 65.1 17698 20.9 2027
TX 886 69.4 19550 17.9 2731
UT 1045 84.5 19859 24.3 2013
VT 907 85.0 16299 13.9 3051
VA 894 75.7 18535 17.4 2620
WA 968 75.5 23485 21.7 3211
WV 976 77.4 17322 16.9 2764
WI 1007 84.0 21496 17.4 3237
WY 1034 81.7 23822 15.2 4045


