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Many people who do data analysis take only afew classes in gatistics and hence, in generd,
get introduced only to classica methods of gatidtics, i.e., least squares, normd theory, and
possibly maximum likeihood methods. The mativation for most of these techniquesisthe
maximizing of afunction of the data with respect to some parameter—mean, variance, ope,
e.g. Cdculusisusad by taking derivatives and solving an equation set to equa zero.

So many analyzers of data do not know about robust, nonparametric, or dternative satistical
methods that are probably better suited to avoiding misinterpreting one’ s data. Many of these
latter methods cannot be developed by Caculusl A possible way to avoid this dilemmaisto
offer amethod of ingtruction that alows both classca and other estimation techniques to be
developed smultaneoudy. Correlation coefficients offer avery generd method of estimating
parameters and hypothesistesting.  The motivation for their useis based on n-dimensiond
geometry and the generdization of the concept of the pardldogram law and perpendicularity in
aHilbert Space. Classica statistical methods are represented by Pearson’s Correlation
Coefficient and the Cosine function. Other methods, such as median methods, are represented
by Kenddl’ s tau or by one or more absolute value correlation coefficients, still more techniques,
equa area or volume, by the Greatest Deviation Correlation Coefficient . The regresson
gpproach isfirgt shown using Pearson’s and Kendall’ s correlation coefficients. Then n-
dimensond geometry and orthogondity are used for mativation, athird correation is
introduced, the Greatest Devietion, and findly, some smple linear regresson examples
illudtrate these idess.

After the development of smple linear regression, these techniques can be broadened for
location and scale estimation.

1. Introduction, Least Squares, Pearson’s r, and Kendall’s
Tau

The stage for smple linear regression will be set by reviewing the relationship between least
squares and Pearson’s Correlation Coefficient, r ,. Let continuous bivariate data be defined as

X-y vectors,
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Let themode betheusud y=a +bx+e where a istheintercept, b isthe dope, and the
random error e has expectation zero. Thus, E(Y|x) = a +bx. Let X and Y-RX be random
vaiables. Since Y - bX =a + e and the error random variable is assumed to be independent

of random variable X, for any corrdation coefficient, r, and a population modd,
ro(X Y- bX) hasaNull distribution with expectation zero. Because correlation coefficients

arelocation invariant, the intercept parameter, a , isnot involved in the estimation of the dope

3, and b the estimate, is adope that makesthe residuas y- bx uncorrdaed with x. The
esimation of 3is obtained by solving the sample equivaent of the expectation being zero,

ro(Xx,y-bx)=0 @

Thefirst example shows, as widely known, that Pearson’s 1, is gives the same resuilt as least
squares in smple linear regressson.

Example 1: Pearson’s "p
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sample covariance. Then ry(X,y) =

sty

To solve equetion (1) using r, we obtain

rp(x,y- bx) :;)(Xy ZX =0 0r Sy y. px = Sy - bs)z( = 0. Thefind resultisb =
- DX

2
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The intercept estimate comes aso from a population modd. Wewant E(Y - bX - a)=0 so
we make the sum of the resduads zero. Thisleadsto

b="Y rp(x,y)é . Thisis, of course, dso known as the least squares solution.

0=4e=a(y-bx-a)=ay-bax- "2 Theglutionfor a isa = y- bx.

There is athird method to motivate the least squares or Pearson method and it uses the idea of
minimizing the distance from perfect negetive correlation plus the distance from perfect positive
corraion. Thisisimportant because this method aone generdizes to NPCC, not the
minimization of resduds. Let

fa(b) =3 (% +yi - bx)? (donc)and f,(b) =@ (X - (y; - bx))” (dppc). Then
i=1 i=1
rrgn(fn(b) + fp(b)) iseadly shown to be equivaent to minimizing the usud resdud sum of

squares. It will be shown that setting Kendall’s CC equd to zero and solving for b is
equivaent to an andogous minimization.



Example 2: Kendall’s tau, or rk

To solve equation (1) for Kendal’ s tau, we must first review how to calculate rk assuming no
tied values. Let thex databeordered x; <X, <---<X,, and relabel theyj that corresponds
to X as y;, etc. Then the data can be lised as it would be graphed from left to right

X <X << Xp
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For any datapair (%, ¥ ),(X;, ;) thedope of theline between themiis [ :y and the
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pair is sad to be concordant if the dopeis pogitive but discordant if negative. Note that if j>i,
X; - % >0 and the concordance of thei j pair depends solely on sign(y; - y;). Forthe
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g f data points, let
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C =#concordants = é é (sign(y; - %) +1)/ 2
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n-1
D =#discordants = - 601 é (sign(y; - ¥)-1)/ 2
i=1j>i

By assumption there no ties, so C+D= g;g. Kendal’ stau, rk, is defined to be
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We now solve equation (1) with rg. The g;z dopesljj are sometimes called
elementary estimates of thedope 3. Let ES:{Iji,j > i} be this st of dementary dopes.  To
lve r«(xy-bx)=0

we need C=D. Now recall
1% < Xy << Xy 0

| .
Y- bX, Yo - BXp, e,V - DXy

Note thet for 3 very negative or near - * dl the(i,j) pairs are concordant and
re(xy- bx) = +1. Ontheotherhand, if Risnear +¥ dl pairs are discordant and
r.(xy- bx)=-1. Thus asb increases continoudy from near - + ,the (i,j) pair changes
fromCtoD at y] - bXJ =Yi- in,Or |J| :u =b.

X - %
It followsthet if b increasesto median( ES), then C=D and equation (1) is stisfied. The
solution to equation (1) then for Kendal’ stau is



b= b = median(l;}) because r, (xy- bx)=0. )

For the intercept estimate, Wechoosgmedim(ei) =0 where® =Yi-bX-a =15 . n
This impliesthar 8 = Median(y; - bx).

The motivation for thislocation estimate comes from idess contained in scale and location
papers.

Just like least squares, Kenddl’s method minimizes the square of distances from C = dpnc plus
D =dppc. Cand D are the concordances and discordants between vectors x and y-bx. Atb

. ano : .
near minusinfinity C = gzi and D=0. Asb increases, C increases by one at each elementary
4]

dope and D decreases by one. By asimple exampleitiseasy to seethat C? + D? is
minimized when C=D or when r, (X, y - bx) =0.

Inboth of these examples there is an explicit solution to the regression equation (1). Before
giving athird example, in which no explicit solution to equation (1) is known to exist, we will
look et the n-dimensiona view of this regresson.

2. A General n-Dimensional Correlation Interpretation of
Regression

InFigure 1, x andy, the data vectors are represented as vectors in Euclidean n-space.
Pearson’s rp isthe cosine of the angle “&’ between vectorsx andy or asshownin

2 2
Gideon(1998) it is coszg- sinzg = |X+4y” i "X'4y” . IntheFigure, the angle a2 isthe

angle between vectors x and x +y. To find the estimate of the dope, b, the usua
interpretation isto project vector y onto x andthisoccursat bx onx. Thisisequivaent
to determining “b” so that length(x+y-bx) = length(x-(y-bx)); the corresponding vectors are
shown inthe Figure. Corrdation isafunction of standarized data and so without a notation
change we ask the reader to think of al n-dimensiona vectors to be standarized(centered at
zero and length 1). With Pearson’sr thisisthe usud “normdization”. We interpret length(x+y)
as the distance from perfect negative correlation (dpnc) with amaximum of 2 when y=x.
Likewise, length(x-y) is distance form perfect positive correation (dppc) with amaximum length
of 2. Thisideaisdaborated in Gideon (1998). We now connect this to the so called
Paralldogram Law in aHilpert Space; with [X|2 = |y = 1, the Law is

[x+ y|* +|x- yIF =2. When y=x,
2 _ 2 _ 2 _
X" =2 g Ix- A =0 5 that dpnc= amaximum. Likewise when y=-x, -y =2

2
and [X+Y°=0

2 >

I+ " Ix- " =0, If X is not orthogondl to y, then determining “b” so that
2 2

[x+y- bq" - |x- (y- bx}|" =0

, S0 that dppc = amaximum. Also in aHilpert Space, x is orthogond toy if

is the regression equation in n-gpace. In genera, any CC



can be interpreted as “ distance” from perfect negative corrdationdpnc, with “length” (x+y)
minus “distance’ from perfect postive corrdation, dppc, with “length” (x-y). Theregression
equion is

corr(x,y- bx)="length'(x +y - bx)- "length”(x- (y- bx))=0 (1%)

For Kendall’'s Tay 1ength" (x +y- bx)=C gyq "length”(x - (y- bx))=D_

For Pearson’s  CC, the location estimate which is the mean of the uncentered resduals,
a =y- bx, isthen-dimensiond Qrojectionof y- bx Eotheconstant vector, 1. The cosne
of theanglebetween a1 and y- bx is néz/é (y - bx)?.

3. The Greatest Deviation Correlation Coefficient, rq, GDCC

This correlaion isintroduced becauseit is a robust estimator that can be used to illustrate some
generd ideas and it does not have an explicit solution ot the regression equation (1) or (1*).
The cdculdion of 4y can be defined by transforming to ranked data with the x-data ordered
from smallest to largest as above.
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where g; =rank(y,) withinthey’swhichisparedwiththeithsmdlestxvdue, 1=1,2,...,.n. We
now define dppc and dpnc. At x; or i, let

d" =#{q;ii <, 1£]£Q}, i =1,2-,n.

max d;"

1£ifEn = dppc

d =#{q;i <n+1- q;1£ jEi}, i =12,--,n.
max di-

1£iEn = dpnc.

It can be shown that both dppc and dpnc have maximum va ues of g g thisis grestest integer

notation. When dppc is max, dpnc is zero and vice-versa. So GDCC is



dpnc - dppc
énu
é20

rga (% y) =

GDCC isanonparametric rank CC and like Kenddl’s Tau, the vaue of rgq (X, y - bx)
changes only & the elementary slopes, |;;. However, ryy may not changeat each |

because it has fewer values and is an areacounting CC. Let

rga(xy- bx) = f(b). JustlikeKendal'sTau, f(b) is+1whenbisvery negativeandis-1
when bisvery postive. Thisfunction f(b) ispseudo monotonic decreasing(PMD) which
meansit isastep function and asbincreases, f (b) will decreasea nor n+1of thel;;. The

PMD property dlows the regression equation to be efficiently numericaly solved,
rga(X,y- bx) =0.

4. The First Example

Thisfirst example was chosen to show the smilarities of each of the three corrdaionsin their
method of estimation of the dope when the datahas no tied values.  The data comes from the
1989 Mgor League Baseball season. The predictor varigble is the team’ s pitching earned run
average (ERA) amd the response varigble is the team’ s winning percentage. In 1989 there
were 26 mgor league teams; s0 the sample Sze is 26.

A plot of the data with three regression linesis given at the end of the paper. ERA isthe
horizontal axis and winning percentage isthe vertica axis. The Pearson, Kenddl, and GD
regression lines are drawn. Following the graph is a page giving the data and the intercepts and
dopes used in the graphs.

Two figures are included which show the graph ( r = one of our correlation coefficients) of b -
Vs r(x,y-bx) for aset of dopes, b. The Figure 2 gives awider range of b to indicate the
common behavior of each of the three corrdations, Figure 3 gives a narrower range of b in the
vicinity of the solution to the regression equations. For each graph there are two points of
interest, r(x,y), b=0, and the b for which r(x,y-bx)=0. These points are summarized in the table:

Correlation Coefficient

GDCC Kenddl Pearson
dope -0.0835 -0.1024 -0.1145
correlation -0.3846 -0.4092 -0.6833

From the graphs, it isnow shown how to obtain confidence intervals.  For each corrdation
coefficient (CC), if b indicates the dope parameter, then for vector random variables and
each season, r(X,Y-b X) hasaNull distribution centered a zero, with n=26 (the number of
teams hasincreased since 1989). A confidence interval can be obtained in asmilar fashion for
each of theCC's. Let r% be the upper a/2 quantile for a CC with the Null distribution.

Then
P(- ra/2£ r(x,Y)£ r%) =1-a,



for Pearson’s CC with the normdity assumption, but this can only be gpproximately obtained
for the nonparametric CC's GD and Kendall because of the discrete nature of the distributions.
The confidence interva is obtained by projecting from the correlation axis & the points + ra/2

on the graphs to the dope axis, ie, determine

b, suchthat r(x,y- bx) :r%

b, such that r(x,y- b,x)=- r%.

The asymptotic distributions were used to approximeate these points; r% for 1- a =.80.
For largen, it isapproximatly true that

JnGD is N(0,), g;grk is N(o - 1)2;2”+5)), and Jn- 3r, is N(O,1).

We give atable that summarizes the results and the reader should relate them to the graphs.

Correlation Codfficient

GD Kenddl Pearson
by -0.153 -0.142 -0.148
b, -0.047 -0.071 -0.081

Both this example and the next one were chosen to illustrate data for which each data point
should have equa importance. The assumption of bivariate normality to make Pearson’'s CC
andyssvdidisavery questiond act. Many studiesin Sociology, Medicine, and Psychology
are examplesin which dl data points are of equa importance and the normality assumption to
make classcd anadydsvdid should only be done after appropriate investigation. However,
many times this cannot be done because like baseball, the experiments are not redly repestable.
Thus, if interest isin how Pitching ERA relates to winning percentage, the two nonparametric
measure are probably most appropriate.

5. A Second Example

This example shows that nonparametric counting techniques are not only valid but easy to apply
when there are many tied values. The datais from the 1992 baseball season and concerns the
number of runs (y) and the number of hits (x) for each of the 175 gamesthat the Atlanta Braves
played. Thedatais split into two parts, hits and runs for the Bravesis one sat and likewise for
their opponent in each game. There are many games with the same number of hits and runs and
0 many tied vaues. To give someidea of the data, the following table gives basic satistics:

hits n=175 runs
per mean SD Q1 med Q3 mean SD Q1 med Q3
game
Bravs 852 325 6 8 10 421 286 2 4

5
Oppn 814 329 6 7 10 354 290 1 3 5



A second table summarizes the correlation between x=hits and y=runs

Corrdation Table

Braves Opponent
Pearson 0.7770 0.7447
Kenddl 0.4368 0.4942
GD 0.5536 0.5245

It should not be inferred from the correlation table that Pearson’s correlaion shows more of a
relationship between x and y because it is substantidly larger; each CC is estimating a different
feature of the x-y relationship and in genera, Kendal and GD are dways less than Pearson.
Their P-value could be more or less that the P-value for Pearson, depending upon what
assumption one wants to make on the digtribution.

The quedtion of this example is“what is the average number of hitsto produce arun?’ asmple
method would be to compute from the table above :

Braves, 8.52/4.21 =2.02 Opponents, 8.14/3.54 = 2.30,

or dternatively 8/4 = 2.00 7/3=233.

A more refined method would be to compute the dopein asmple linear regresson of y on x.
There are many tied values and max-min procedure of Gideon and Hollister (1984) is used.
For any nonparametric CC, for each set of (x,y-bx) vectors, the ranks are computed within the
redriction of the tied vaues to produce the maximum and minimum corrdation of x and y-bx.
These are averaged to produce a unique CC. The graphs of b and y- bx then maintain their

PMD festure necessary for dope determination. Thiswas done for GD and Kendall.

It isthistied value procedure that alows the CC estimation techniques to be used in many other
areas of gatidtics, eg. location and scae estimation. The dopes and their reciprocas are now
liged in atable:

dope=runsper  hit reciproca = hitsto produce  onerun
CC Braves recip Opponents recip
Pearson 0.6828 1.46 0.6553 153
Kendal 0.6250 1.60 0.6666 1.50
GD 0.5000 2.00 0.6125 1.63

Note that GD indicates more hits to produce a run than Pearson or Kendall and each case
(Braves, Opponents) is closer to the smple technique above. Thus, the graph of (b,GD(X,y-
bx)) lies below that of Kendall and Pearson to the left of the dope estimate. Sports examples
are great examples because arguments about which method is best depicts redlity can be heated
but in redity are only important to the entertainment industry. Medicine, Pschology, and
Sociology problems, however, are usudly important for Mankind and so should be investigated
with a least two methods in today’ s computer world in order to avoid coming to an
inappropriate conclusion.

6. Historical Perspective



Sen's 1968 paper, “Egtimates of the Regression Coefficient Based on Kenddl’s Tau” gives
further history and shows the unbiasedness of the dope estimate for Tau. Because Tauisa
discrete CC, the regression equation (1) or (1*) can have an intervd for asolution. Sen givesa
mathematica definition for using the midpoint of thisinterva for the solution. Further, he shows
invariance under linear transformations, gives asymptotic properties of the estimate, and

devel ops the confidence interval using the dopes {I i } His method throws out tied value in the

X' sand so anumericd routine using his method may be dightly different from the generd
development of this paper. He does not formulate the regression equation directly as was done
in this paper and does not present the graphica method of confidence intervas.

Noether’s 1990 book, Introduction to Statistics, the Nonparametric Way, developsthe
elementary dope method of estimating the dope and shows how to do it with “minitab” He
gives basic ideas behind the methods for beginning students.

Book’s like Hettmansperger 1984 Satidica Inference Based on Ranks develop regression
using the linearity property of many CC's, but by passes the direct use of correlation.
Sometimes the x is left done while the y-bx is transformed to ranks. Also “score” functions are
used on ether the x or y part of the data. Some of these score functions are taken to be a set of
equaly spaced , centered at zero, numbers and others use “normal scores’, i. e., the cumulative
distribution function of the sandard norma. These methods are not generadl enough to include
GD asaedimator of the dopein asmple linear regression because it isnot asmple linear
function as are the Pearson and Kenddl CC’s.  Hettmansperger’s book in Section 1.5 does
illusirate the graphical idea of the confidence interva asis done in this paper but he only doesit
for the one-sample location problem.

The Randles and Wolfe book, Introduction to the Theory of Nonparametric Statistics also relies
on linearity and makes regresson seem very difficult. Rousseeuw and Leroy, Robust
Regression & Outlier Detection, relies on the least median of squares technique which hasa
very high breskdown point. The recent (1997) book by Sheskin covers correations such as
Pearson, Spearman, and Kendall, and various used of them, but this gppears at the end of the
book and does not relate correlation to regression and other statistical methods.

7. Correlation as Estimating Functions

In Gideon (1998), there are other CC’swhich can be used to estimate the dopeinasmple
linear regression. The estimating technique would be asillugtrated in this pgper. Which CCis
best for which sampling Stuation is an open question  For smal sample szes and assumptions
on the X,Y distributions, the Null Digtribution of any CC can be gpproximated by smulation;
then the confidence interva for the dope could be obtained. The asymptotic Null Digtribution
has not been worked out for al of these CC's, so further work would have to been done for
large samples.

In Gideon (1998), the use of CC'sin dementary time serieswas indicated. Based on the work
in this paper and the other 1998 paper, the estimation of location and scale parametersisthe
next step. In generd, CC's can be used in many estimation Situations and should be considered
asadass of esimating functions rather than, asit currently is, just summary datigtics.
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It will be shown in the paper on scae and location estimation, the third paper in this corrdation
series, that for nonparametric correlation coefficients that the location estimate is more accurate
when done after scale estimation. Thus, after that paper, a better estimate of the intercept of the
regression can be obtained by first computing the residua estimate of the scale factor with
nonparametric correlation coefficient. This current paper isthe second in the serieson
edimation with correlaion coefficients.
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