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Many people who do data analysis take only a few classes  in statistics and hence, in general,
get introduced only to classical methods of statistics; i.e., least squares, normal theory, and
possibly maximum likelihood methods.  The motivation for most of these techniques is the
maximizing of a function of the data with respect to some parameter—mean, variance, slope,
e.g.  Calculus is used by taking derivatives and solving an equation set to equal zero.

So many analyzers of data do not know about robust, nonparametric, or alternative statistical
methods that are probably better suited to avoiding misinterpreting one’s data.  Many of these
latter methods cannot be developed by Calculus!   A possible way to avoid this dilemma is to
offer a method of instruction that allows both classical and other estimation techniques to be
developed simultaneously.   Correlation coefficients offer a very general method of estimating
parameters and hypothesis testing.   The motivation for their use is based on n-dimensional
geometry and the generalization of the concept of the parallelogram law and perpendicularity in
a Hilbert Space.  Classical statistical methods are represented by Pearson’s Correlation
Coefficient and the Cosine function.  Other methods, such as median methods, are represented
by Kendall’s tau or by one or more absolute value correlation coefficients, still more techniques,
equal area or volume, by the Greatest Deviation  Correlation Coefficient .  The regression
approach is first shown using Pearson’s and Kendall’s correlation coefficients.  Then  n-
dimensional geometry and orthogonality are used for motivation,  a third correlation is
introduced, the Greatest Deviation, and finally,  some simple linear regression examples
illustrate these ideas.

After the development of simple linear regression, these techniques can be broadened for
location and scale estimation.

1. Introduction, Least Squares,  Pearson’s r, and Kendall’s
Tau

The stage for simple linear regression will be set by reviewing the relationship between least
squares and Pearson’s Correlation Coefficient, r p .  Let continuous bivariate data be defined as
x-y vectors,
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n = (x, y) =
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Let the model be the usual  y = α + βx + ε  where   α is the intercept, β  is the slope, and the
random error  ε  has expectation zero.  Thus, E(Y x) = α + βx .  Let X and Y-ßX be random
variables.  Since  Y − βX = α + ε  and the error random variable is assumed to be independent
of random variable X, for any correlation coefficient, r,  and a population model,
r p( X, Y − βX )    has a Null distribution with expectation zero.  Because correlation coefficients
are location invariant, the intercept parameter,  α ,  is not involved in the estimation of the slope
ß, and ˆ β , the estimate, is a slope that makes the residuals  y − ˆ β x  uncorrelated with x .  The
estimation of ß is obtained by solving the sample equivalent of the expectation being zero,

 r p(x, y − βx) = 0 (1)

The first example shows, as widely known, that Pearson’s r p  is gives the same result as least
squares in simple linear regresssion.

Example 1: Pearson’s r p

For this case let  sx
2 =

(xi − x )2∑
n − 1

,sy
2 =

(yi − y )2∑
n − 1

, and sxy =
(xi − x )(yi − y )∑

n − 1
, the

sample covariance.  Then  rp(x,y) =
sxy

sxsy
.

To solve equation (1) using r p  we obtain

rp(x,y − bx) =
sx ,y−bx

sxsy −bx
= 0  or sx ,y− bx = sxy − bsx

2 = 0.  The final result is b =

ˆ β =
sxy

sx
2 = r p(x,y)

sy

sx
.  This is, of course, also known as the least squares solution.

The intercept estimate comes also from a population model.  We want  E(Y − βX − α ) = 0  so
we make the sum of the residuals zero.  This leads to

0 = εi∑ = (yi − ˆ β xi − α ) = yi∑ − ˆ β xi∑ − nα∑ . The solution for  α  is ˆ α = y − ˆ β x .

There is a third method to motivate the least squares or Pearson method and it uses the idea of
minimizing the distance from perfect negative correlation plus the distance from perfect positive
correlation. This is important because this method alone generalizes to NPCC, not the
minimization of residuals.  Let
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pn ff +   is easily shown to be equivalent to minimizing the usual residual sum of

squares.  It will be shown that setting Kendall’s CC equal to zero and solving for β   is
equivalent to an analogous minimization.
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Example 2: Kendall’s tau, or rk
To solve equation (1) for Kendall’s tau, we must first review how to calculate rk assuming no
tied values.  Let the x data be ordered    x1 < x2 <L< xn , and  relabel the yj that corresponds
to x1 as y1 , etc.  Then the data can be listed as it would be graphed from left to right

  

x1 < x2 <L< xn

y1,    y2,         yn
.

For any data pair (xi , yi ),(x j, y j )  the slope of the line between them is  l ji =
yj − yi

xj − xi
 and the

pair is said to be concordant if the slope is positive but discordant if negative.  Note that if j>i,
x j − xi > 0  and the concordance of the i j pair depends solely on  sign(y j − yi ) .  For the
n
2

 
 
  

 
 pairs of data points, let

C = #concordants =
j >i
∑ (sign(yj − yi ) +1)

i=1

n −1

∑ / 2

D = #discordants = −
j>i
∑ (sign(yj − yi ) −1)

i =1

n −1

∑ / 2

By assumption there no ties , so C+D= 
n
2
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 
.  Kendall’s tau, rk, is defined to be

C − D
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− 1.

We now solve equation (1) with rk.  The  
n
2
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  

 
 slopes lji are sometimes called

elementary estimates of the slope ß.  Let ES = lji , j > i{ } be this set of elementary slopes.    To
solve rk (x, y − bx) = 0

we need C=D.  Now recall

  

x1       <    x2    <L<    xn

y1 − bx1, y2 − bx2,L, yn − bxn

 
 
 

 
 
 

.

Note that for ß very negative or near  − ∞  all the (i,j) pairs are concordant and
rk (x, y − bx) = +1.  On the otherhand, if  ß is near + ∞  all pairs  are discordant and
rk (x, y − bx) = −1.  Thus, as β  increases continously from near  − ∞ ,the (i,j) pair changes

from C to D at  y j − bx j = yi − bxi , or  l ji =
yj − yi

xj − xi
= b  .

It follows that if β  increases to median( ES ), then  C=D and equation (1) is satisfied. The
solution to equation (1) then for Kendall’s tau is
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b = ˆ β = median(lji )   because  rk (x, y − ˆ β x) = 0 .

For the intercept estimate, we choose median(εi ) = 0, where ε i = yi − ˆ β xi − α ,  i =1,2,L,n .

This  implies that  ˆ α = median (yi − ˆ β xi ) .

The motivation for this location estimate comes from ideas contained in scale and location
papers.

Just like least squares, Kendall’s method minimizes the square of distances from C = dpnc plus
D = dppc.  C and D are the concordances and discordants  between vectors x and y-βx.  At β

near minus infinity 







=

2
n

C  and D=0.  As β  increases, C increases by one at each elementary

slope and D decreases by one.  By a simple example it is easy to see that  22 DC +  is
minimized when C=D or when 0),( =− xyxrk β .

In both of  these  examples  there is an explicit solution to the regression equation (1).  Before
giving a third example, in which no explicit solution to equation (1) is known to exist, we will
look at the n-dimensional view of this regression.

2. A General n-Dimensional Correlation Interpretation of
Regression

In Figure 1, x and y,  the data vectors  are represented as vectors in Euclidean n-space.
Pearson’s  rp is the cosine of the angle “a” between vectors x  and y   or as shown in

Gideon(1998) it is  cos2 a
2

− sin 2 a
2

=
x + y

2

4
−

x − y
2

4
.    In the Figure, the angle a/2 is the

angle between vectors  x   and  x + y .  To find the estimate of the slope, b, the usual
interpretation is to project  vector  y  onto  x   and this occurs at  bx   on x.   This is equivalent
to determining “b” so that length(x+y-bx)  =  length(x-(y-bx));  the corresponding vectors are
shown in the Figure.  Correlation  is a function of standarized data and so without a notation
change we ask the reader to think of all n-dimensional vectors to be standarized(centered at
zero and length 1).  With Pearson’s r this is the usual “normalization”.  We interpret length(x+y)
as the distance from perfect negative correlation (dpnc) with a maximum of 2 when y=x.
Likewise, length(x-y) is distance form perfect positive correlation (dppc) with a maximum length
of 2.  This idea is elaborated in Gideon (1998).  We now connect this to the so called
Parallelogram Law in a Hilpert Space; with  x 2 = y 2 = 1, the Law is

x + y 2 + x − y 2 = 2 .  When y=x,

x + y 2 = 2  and  x − y 2 = 0 , so that dpnc= a maximum.  Likewise when y=-x, x − y 2 = 2

and  x + y 2 = 0 , so that dppc = a maximum.  Also in a Hilpert Space, x is orthogonal to y if
x + y 2 − x − y 2 = 0 .  If x is not orthogonal to y, then determining “b” so that
x + y − bx 2 − x − (y − bx) 2 = 0  is the regression equation in n-space.  In general, any CC
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can be interpreted as “distance” from perfect negative correlation,dpnc,  with “length”(x+y)
minus  “distance” from perfect positive correlation, dppc, with “length”(x-y).  The regression
equation is

corr(x, y− bx) ="length"(x + y − bx)−"length"(x − (y− bx)) = 0 .                            (1*)

For Kendall’s Tau "length"(x + y− bx) = C   and  "length"(x − (y− bx)) = D .

For Pearson’s   CC, the location estimate which is the mean of the uncentered residuals,
ˆ α = y − ˆ β x ,  is the n-dimensional projection of  y − ˆ β x  to the constant vector, 1.  The cosine

of the angle between  ˆ α 1 and y − ˆ β x  is  n ˆ α 2 (yi − ˆ β xi )
2∑ .

3. The Greatest Deviation Correlation Coefficient, rgd , GDCC

This correlation is introduced because it is a robust estimator that can be used to illustrate some
general ideas and it does not have an explicit solution ot the regression equation (1) or (1*).

The calculation of  rgd  can be defined by transforming to ranked data with the x-data ordered
from smallest to largest as above.

  

x1,y1

x2 , y2

M
xi ,yi

M
xn , yn

 

 

 
 

 

 
 

→   

  

1,q1

2,q2

M
i, qi

M
n,qn

where  qi = rank (yi )  within the y’s which is paired with the ith smallest x value, i=1,2,...,n.  We
now define dppc and dpnc.  At  xi  or  i , let

di
+ =# {q j ;i < q j ,1 ≤ j ≤ i},    i =1,2,L,n .

max
1≤i≤n

di
+

  =  dppc

di
− =# {q j;i < n +1 − q j ,1≤ j ≤ i},    i =1,2,L,n .

max
1≤i≤n

di
−

  = dpnc.

It can be shown that both dppc and dpnc have maximum values of  
n
2

 
 

 
 
, this is greatest integer

notation.   When dppc is max, dpnc is zero and vice-versa.  So GDCC is
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rgd (x, y) =
dpnc − dppc

n
2

 
 

 
 

.

GDCC is a nonparametric rank CC and like Kendall’s Tau, the value of  rgd (x, y − bx)
changes only at the elementary slopes,  l ji .  However,  rgd  may not change at each  l ji

because it has fewer values and is an area counting CC.  Let

rgd (x, y − bx)   = f (b) .   Just like Kendall’s Tau, f (b)  is +1 when b is very negative and is -1
when b is very positive.  This function  f (b)  is pseudo monotonic decreasing(PMD) which
means it is a step function and as b increases, f (b)  will decrease at n or n+1 of the l ji .  The
PMD property allows the regression equation to be efficiently numerically solved;
rgd (x, y − bx) = 0.

4. The First Example
This first example was chosen to show the similarities of each of the three correlations in their
method of estimation of the slope when the data has no tied values.   The data comes from the
1989 Major League Baseball season.  The predictor variable is the team’s pitching earned run
average (ERA) amd the response variable is the team’s winning percentage.  In 1989 there
were 26 major league teams; so the sample size is 26.

A plot of the data with three regression lines is given at the end of the paper. ERA is the
horizontal axis and winning percentage is the vertical axis.  The Pearson, Kendall, and GD
regression lines are drawn.  Following the graph is a page giving the data and the intercepts and
slopes used in the graphs.

Two figures are included which show the graph ( r = one of our correlation coefficients) of b -
vs- r(x,y-bx) for a set of slopes, b.  The Figure 2 gives a wider range of b to indicate the
common behavior of each of the three correlations, Figure 3 gives a narrower range of b in the
vicinity of the solution to the regression equations.  For each graph there are two points of
interest, r(x,y), b=0, and the b for which r(x,y-bx)=0.  These points are summarized in the table:

Correlation Coefficient
GDCC Kendall Pearson

slope -0.0835 -0.1024 -0.1145
correlation -0.3846 -0.4092 -0.6833

From the graphs, it is now shown  how to obtain confidence intervals.   For each correlation
coefficient (CC),  if  β  indicates the slope parameter, then for vector random variables and
each season, r(X,Y-β X) has a Null distribution centered at zero, with n=26  (the number of
teams has increased since 1989).  A confidence interval can be obtained in a similar fashion for
each of the CC’s.  Let  rα

2
 be the upper α 2  quantile for a CC with the Null distribution.

Then

P(−rα
2

≤ r(X ,Y ) ≤ rα
2
) = 1 − α ,
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for Pearson’s CC with the normality assumption,  but this can only be approximately obtained
for the nonparametric CC’s GD and Kendall  because of the discrete nature of the distributions.
The confidence interval is obtained by projecting from the correlation axis  at the points  ± rα

2
on the graphs to the slope axis; ie, determine

bl   such that r(x,y − blx) = rα
2

bu  such that r(x,y − bu x) = −rα
2

.

The asymptotic distributions  were used to approximate these points; rα
2

 for  1 − α =. 80.

For large n,  it is approximatly true that

nGD  is  N(0,1),   
n
2

 
 
  

 
rk   is  N(0,

(n − 1)n(2n + 5)
18

) , and n − 3rp  is N(0,1) .

We give a table that summarizes the results and the reader should relate them to the graphs.

Correlation Coefficient
GD Kendall Pearson

          bl -0.153 -0.142 -0.148
          bu -0.047 -0.071 -0.081

Both this example and the next one were chosen to illustrate data for which each data point
should have equal importance.  The assumption of bivariate normality to make Pearson’s CC
analysis valid is a very questional act.  Many studies in Sociology, Medicine, and Psychology
are examples in which all data points are of equal importance and the normality assumption to
make classical analysis valid should only  be done after appropriate investigation.  However,
many times this cannot be done because like baseball, the experiments are not really repeatable.
Thus, if interest is in how Pitching ERA relates to winning percentage, the two nonparametric
measure are probably most appropriate.

5. A Second Example

This example shows that nonparametric counting techniques are not only valid  but easy to apply
when there are many tied values.  The data is from the 1992 baseball season and concerns the
number of runs (y) and the number of hits (x) for each of the 175 games that the Atlanta Braves
played.  The data is split into two parts, hits and runs for the Braves is one set and likewise for
their opponent in each game.  There are many games with the same number of hits and runs and
so many tied values.  To give some idea of the data, the following table gives basic statistics:

hits n=175 runs
per
game

mean SD Q1 med Q3 mean SD Q1 med Q3

Bravs 8.52 3.25 6 8 10 4.21 2.86 2 4 5
Oppn 8.14 3.29 6 7 10 3.54 2.90 1 3 5
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A second table summarizes the correlation between x=hits  and y=runs
Correlation Table
Braves Opponent

Pearson 0.7770 0.7447
Kendall 0.4368 0.4942
GD 0.5536 0.5245

It should not be inferred from the correlation table that Pearson’s correlation shows more of a
relationship between x and y because it is substantially larger; each CC is estimating a different
feature of the x-y relationship and in general, Kendall and GD are always less than Pearson.
Their P-value could be more or less that the P-value for Pearson, depending upon what
assumption one wants to make on the distribution.

The question of this example is “what is the average number of hits to produce a run?”  a simple
method would be to compute from the table above :

Braves,  8.52/4.21  = 2.02 Opponents, 8.14/3.54 = 2.30,
or alternatively 8/4 = 2.00 7/3 = 2.33.
A more refined method would be to compute the slope in a simple linear regression of y on x.
There are many tied values and max-min procedure of Gideon and Hollister (1984) is used.
For any nonparametric CC, for each set of (x,y-bx) vectors, the ranks are computed within the
restriction of the tied values to produce the maximum and minimum correlation of x and y-bx.
These are averaged to produce a unique CC.  The graphs of b and y-bx then maintain their
PMD feature necessary for slope determination.  This was done for GD and Kendall.

It is this tied value procedure that allows the CC estimation techniques to be used in many other
areas of statistics, e.g. location and scale estimation.  The slopes  and their reciprocals are now
listed in a table:

slope= runs per hit reciprocal = hits to produce one run
CC Braves recip Opponents recip
Pearson 0.6828 1.46 0.6553 1.53
Kendall 0.6250 1.60 0.6666 1.50
GD 0.5000 2.00 0.6125 1.63

Note that GD indicates more hits to produce a run than Pearson or Kendall and each case
(Braves, Opponents) is closer to the simple technique above.  Thus, the graph of (b,GD(x,y-
bx)) lies below that of Kendall and Pearson to the left of the slope estimate.  Sports examples
are great examples because arguments about which method is best depicts reality can be heated
but in reality are only important to the entertainment industry.  Medicine, Pschology, and
Sociology problems, however,  are usually important for Mankind and so should be investigated
with at least two methods in today’s computer world in order to avoid coming to an
inappropriate conclusion.

6. Historical Perspective
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Sen’s 1968 paper, “Estimates of the Regression Coefficient Based on Kendall’s Tau” gives
further history and shows the unbiasedness of the slope estimate for Tau.  Because Tau is a
discrete CC, the regression equation (1) or (1*) can have an interval for a solution.  Sen gives a
mathematical definition for using the midpoint of this interval for the solution.  Further, he shows
invariance under linear transformations, gives asymptotic properties of the estimate, and
develops the confidence interval using the slopes  l ji{ }.  His method throws out tied value in the
x’s and so a numerical routine using his method may be slightly different from the general
development of this paper.  He does not formulate the regression equation directly as was done
in this paper and does not present the graphical method of confidence intervals.

Noether’s 1990 book, Introduction to Statistics, the Nonparametric Way,  develops the
elementary slope method of estimating the slope and shows how to do it with “minitab”  He
gives basic ideas behind the methods for beginning students.

Book’s like Hettmansperger 1984  Statistical Inference Based on Ranks develop regression
using the linearity property of many CC’s, but by passes the direct use of correlation.
Sometimes the x is left alone while the y-bx is transformed to ranks.  Also “score” functions are
used on either the x or y part of the data.  Some of these score functions are taken to be a set of
equally spaced , centered at zero, numbers and others use “normal scores”, i. e., the cumulative
distribution function of the standard normal.  These methods are not general enough to include
GD as a estimator of the slope in a simple linear regression because it is not a simple linear
function as are the Pearson and Kendall CC’s.   Hettmansperger’s  book in Section 1.5 does
illustrate the graphical idea of the confidence interval as is done in this paper but he only does it
for the one-sample location problem.

The Randles and Wolfe book, Introduction to the Theory of Nonparametric Statistics also relies
on linearity and makes regression seem very difficult.  Rousseeuw and Leroy, Robust
Regression & Outlier Detection, relies on the least median of squares technique which has a
very high breakdown point.  The recent (1997) book by Sheskin covers correlations such as
Pearson, Spearman, and Kendall, and various used of them, but this appears at the end of the
book and does not relate correlation to regression and other statistical methods.

7. Correlation as Estimating Functions

In Gideon (1998), there are other CC’s which can be used to estimate the slope in a simple
linear regression.  The estimating technique would be as illustrated in this paper.  Which CC is
best for which sampling situation is an open question.  For small sample sizes and assumptions
on the X,Y distributions, the Null Distribution of any CC can be approximated by simulation;
then the confidence interval for the slope could be obtained.  The asymptotic Null Distribution
has not been worked out for all of these CC’s, so further work would have to been done for
large samples.

In Gideon (1998), the use  of CC’s in elementary time series was indicated.  Based on the work
in this paper and the other 1998 paper, the estimation of location and scale parameters is the
next step.  In general, CC’s can be used in many estimation situations and should be considered
as a class of estimating functions rather than, as it currently is, just summary statistics.
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It will be shown in the paper on scale and location estimation, the third paper in this correlation
series, that for nonparametric correlation coefficients that the location estimate is more accurate
when done after scale estimation.  Thus, after that paper, a better estimate of the intercept of the
regression can be obtained by first computing the residual estimate of the scale factor with
nonparametric correlation coefficient.  This current paper is the second in the series on
estimation with  correlation coefficients.
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