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1. Abstract

This paper, third in a series on the correlation estimation system (CES), shows how to use

any correlation coefficient to produce an estimate of location and scale.  Since the normal

distribution is so widely used, the method is illustrated using this distribution.  Analyzers

of normal data are advised to graph a quantile plot to check on the normality assumption

before performing their data analysis; (Looney and Gulledge, 1985) shows how to use

Pearson's pr  as a test of normality.  This paper shows that any correlation coefficient can

be used to fit a simple linear regression line to a graph and then the slope and intercept are

estimates of standard deviation and location. Because a robust correlation will produce

robust estimates, this CES can be recommended as a tool for everyday data analysis.

Tables of mean square error for simulations indicate that the median with this method using

a robust correlation coefficient appears to be nearly as efficient as the mean with good data

and much better if there are a few errant data points.  Hypothesis testing and confidence

intervals are illustrated for the scale parameter.

Key words: simple linear regression, robust estimates, hypothesis testing, confidence

intervals
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This work depends in part on earlier unpublished work of Gideon and others and is

available on the web site: www.math.umt.edu/gideon.  Some of the references will refer to

papers posted at this web site.

2. Introduction

As in (Gideon, 1992) three correlation coefficients (CC) are used: Pearson's pr , Kendall's

τ, and Greatest Deviation Correlation Coefficient (GDCC or gdr ), (Gideon and Hollister,

1987).  The starting point for each estimation technique is exactly the same.  The CCs

chosen illustrate existing techniques: Pearson's, classical statistics; GDCC, robust

methods; Kendall’s τ, a well-known nonparametric (NP) CC.  A problem in (Randles and

Wolfe, 1979, p. 12, problem 1.2.14) indicates how to estimate location and scale from

order statistics.  This method is reviewed and then its connection to Pearson's pr  is made

for data from a normal distribution.  Note, however, that the method is general for any

distribution that can be standardized.

Let ZY σµ += where Z is normal with mean 0 and standard deviation 1, denoted by

)1,0(~ NZ ; then ),(~ σµNY .  Then for the order statistics   Y(1) < Y( 2) <L< Y(n) ,

)()( ii ZY σµ +=  and E(Y( i)) = µ + σE(Z( i)).  Let  niZEk ii ,,2,1),( )( L== .  From the

symmetry of the standard normal, note that ki = 0∑ . (Randles and Wolfe, 1979) next
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This solution is next related to Pearson's pr .  In general, let k be the vector of the expected
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for s using any r, then s estimates σ:
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The use of equation (1) with Pearson's pr  as a scale estimation technique is now related to

two existing scale estimators.  Motivated from (Downton, 1966), let
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The solution for s in equation (1) with this k is related to both Gini's mean difference

(Randles and Wolfe, 1979) or (Hettmansperger, 1984) and a method of Downton (1966).
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It can be shown that sdt =
π
2

D(y) so that Gini and Downton are essentially the same, and

both can be obtained from equation (1) with the k given in (2).  Thus, with today's

computers and statistical packages, all of the above estimates of scale can be obtained

easily from the regression setting (equation (1)) with the ordered data y and an appropriate

k.

(D'Agostino, 1971 & 1973) used Downton's estimate of scale divided by the classical least

squares estimate of σ to perform a test of normality.  The estimate of σ from equation (1)

with )( )( ii ZEk = , ni ,,2,1 L=  could also be used in the D'Agostino normal test of fit with

this s replacing the classical estimate.
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An interpretation of the usual SD = 
)1(

)( 2

−
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yyi  as the slope of a straight line is next

used as a transition to a more geometrical view of scale estimates. Again consider the data

ordered nyyy <<< L21  and let constant c = ))1((12 +nn .  For the horizontal axis
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the case n odd is used so that h  consists of n integers centered at zero (the even case only

requires a change in notation). Now consider the set of points ),( oych  where the

superscript indicates the ordered vector of data points. A line whose slope is SD is chosen

below to go through these points.  Let a horizontal line be drawn at the mean of the data, y ,

on the vertical axis.  The distance of each order statistic from the y line measures its

departure from that line; the SD is an overall measure of departure from the horizontal.  A

plot of ),( oych  roughly creates an angle θ  from the horizontal with SD=θtan .

With this motivation, a straight line with slope SDb =  and intercept y is now constructed

through the points ),( oych . This requires that the line be chosen so that the points bch

have the same cumulative squared distance from the y line.  Hence b  is chosen so that
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 and using the definition of c , the b  that

satisfies the above equation is .SDb =  The figure at the end of this paper shows this line

for a normal random sample, n = 25 with mean 10 and theoretical standard deviation 7.



-

6

For this data y  = 10.56 and SD = 7.39 and so the vertical values are )(*39.756.10 ch+ .

The slope b  is the same as SD and represents the variation in the data.  A steeper slope

(or a largerθ ) implies more variation and a 0 slope (or θ = 0) indicates no variation.  The

range of the plot on the horizontal axis, regardless of the data set, is roughly between 3±

for all n and has equidistant points.

The plotted points ),( oych  can be used to illustrate the CES way of estimating σ . The

scale regression equation (1) is solved for ps , the slope, using Pearson's pr . The equation

is 0),( =− hcsychr p
o

p .  It is straightforward to obtain ps  = ∑
−

−
−=
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For the data used on the Figure 24.7=ps  and for GDCC the scale estimate was 6.80.

After a few computer runs it was clear that ps  and SD or b  have about a 99% Pearson

correlation.  However, ps  is slightly biased.  An adjustment to the constant c  would

make ps  unbiased, which is what Downton’s estimate does.  His constant is 
π)1(

6
+n

 as

compared to c . The ratio of Downton’s constant to c  is nn π)1(3 + .  Asssuming

1)1( ≅+ nn  this is about 0.9772.  Downton constructed his constant so that the pr  scale

regression solution is unbiased.  Downton used linear combinations of order statistics as

his approach rather than using correlation as is done here.

In addition to using CCs in tests of fit (distribution), the CC can be used to estimate

location and scale as in the example above.  Equation (1) can be solved with any
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correlation coefficient, r.   The next section continues the demonstration of the method

using GDCC and Kendall’s τ.  After obtaining s, either the mean or median of the

uncentered residuals is used to obtain a location estimate of the y-data.

3. Interpreting Equation (1)

When gdr is used for r in equation (1) the solution s must be found numerically as no closed

form solution is known, but for Kendall's τ, the equation 0),( =− ksyk oτ  is satisfied by



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−
=

ij

ij

kk

yy
medians )()( (see web site Publication 2).  Because of the discrete nature of

both of the NPCCs, a range of solutions is possible, so a unique s is defined by letting

s = (sl + su ) / 2  where, }0),(:sup{ >−= ksykrss o
l  and }0),(:inf{ <−= ksykrss o

u .

This averaging obtains a unique solution for either r = gdr  or r = τ, or for that matter any

NPCC. 

Note that the left-hand side of equation (1) is a function of y, )(yss = . The function )(ys

has the following form for each of the three CCs considered:

1. for Pearson's pr , )(ys  is a continuous function and (1) has a closed form

solution;

2. for GDCC, )(ys  is a step function based on a NPCC and (1) has only a

numerical solution;

3.  for Kendall’s τ, )(ys  is a step function based on a NPCC and (1) has closed

form solution.
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3. Standard Properties of the Scale Estimator, s(Y )

The function s(Y) is next shown to be location invariant, scale equivariant, and for

symmetric distributions, s(Y ) = s(−Y ); i.e. it is even.  Because CCs are location invariant,

)()1*( YshYs =+ , where h  is any constant and 1 is a n-vector of all 1s and so s(Y ) is

location invariant.  Keep in mind that all data are ordered even though the  "superscript 0 "

notation is not always used. (Rousseeuw and Leroy, 1987) use the term equivariant for

statistics that transform properly.  Note s(Y ) is scale equivariant; i.e., if h > 0 is a constant

and X = hY is a scale change, then it is easy to show s(hY) = hs(Y ). Because

0))(,( =− kXsXkr  and CCs are scale invariant, seeing that

0))(,())(,())(,( =−=−=− kYsYkrkYhshYkrkYhsXkr , verifies that  )(Yhs  is )(Xs ,

that is, s(hY) = hs(Y ). The evenness of s(Y ) for a NPCC requires a lemma.

Lemma 1: Given a NPCC in equation (1) and a symmetric distribution about 0,

s(Y ) = s(−Y ).

Proof: Since the distribution is symmetric about 0, nikk iin ,,2,1,1 L=−=−+ and for the

vector k, (− k)o = k o = k .    It is also true that 
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In equation (1), ))()()(,)(())()(,(0 0000 kysykrkysykr −∗−−−−=−−−= , and (− k)o  and

( )oy− are ordered min to max.  Without the superscript 0, they still correspond but are now

ordered max to min.  So in equation (1),

( ) ( ) ( )( )( ) ( )( )( ) ( )( )kysykrkysykrkysykr ∗−−=∗−−−−=−∗−−−−= ,,,0 ;

the right-most term being equal to zero shows that s(Y ) = s(−Y ).  ♦

This lemma is easily demonstrated for particular cases on a computer.

5. Motivation and Standard Properties of the CES Location Estimator of Y

Because CCs are the estimation tools, the location estimator of Y, say l(Y), is motivated

through regression; the result for Pearson's pr  is the classical mean of the data, whereas for

Kendall’s τ and GDCC it is the median.  To motivate these results, first consider data from

two independent random variables X and Y with sample sizes m and n, respectively.  The

location difference between the two samples is studied via regression.  On a coordinate

plane, let the x-data be plotted as ),0( ix for mi ≤≤1  and the y-data as ),1( iy for ni ≤≤1 .

If there is no difference in the X and Y locations, then a line connecting the center of the x-

data to the center of the y-data should be nearly parallel to the horizontal axis.  To estimate

any possible location difference, a regression line is fit with a coded variable and the (x,

y) data.  Let the column vector c of dimension m + n be given by m 0s followed by n 1s and

the m + n dimension vector v be ( )′nm yyyxxx ,,,,,,, 2121 LL .  Treat c as the regressor

variable and v as the response variable.  Then the CC regression equation is

0),( =− lcvcr  where l  is a location statistic.  It is straightforward to solve this equation
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with Pearson's pr  to obtain l = y − x .  Thus, the slope is y − x  and x + slope = y .  For the

one-sample problem, let all of the x- data be zero; then the estimate of the location of the y-

data is the slope y  since x  is zero.

To solve 0),( =− lcvcτ  it is necessary to work with the elementary slopes of c and v,

ij

ij

cc

vv

−

−
, where they are finite, that is, where 1±=− ij cc . This results in l being the

median of the mn elementary differences yj − xi .  For the one-sample case, all the x’s are

zero, so l = median(yj ) .  As discussed in (Gideon and Rummel, 1992) if the x-data are all

zeros and have the same dimension as Y, namely n, and in addition if the tied value method

(Gideon and Hollister, 1987) is used in the calculation of the NPCCs, then for both τ and

GDCC the median is obtained as the solution to the regression equation, 0),( =− lcvcr .

This has not been proven for GDCC, but only demonstrated via extensive computer

simulations.  This computer work and analysis shows that both the one- and two-sample

problems posed in a regression setting can be performed for NPCCs as has been done for

the least squares (Pearson's pr ) regression method.  The implication is that a fertile field of

research awaits generalization to analysis of variance via regression with NPCCs.

Because the location estimator for Pearson's pr  is the usual y , it is obviously an odd

translation statistic; i.e. a location statistic.  For the other two CCs,

)()( skymedianyl o −=  where τss = or gdss =  is the solution of 0),( =− skykr  and r is

τ or GDCC respectively.
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Lemma 2: For NPCCs τ and GDCC and for a symmetric distribution,

)()( skymedianyl o −= is an odd translation statistic.

Proof: ( )( ) ( ) ( )( )ooo ksymedianskymedianyl −−−=−−=− )(

               ( ) ( )( ) ( ) )(ylskymedianksymedian −=−−=−−−=

For translation, with constant h,

)()())(()( ylhskymedianhskhymedianhyl oo +=−+=−+=+ .

Therefore, the location estimator with NPCCs also has the properties of a location statistic.

♦

Because there is a closed form solution of the scale regression equation (1) using Kendall's

τ, it is possible to make a closer examination of its scale and location estimates.

Let the elementary slopes be lji =
Y( j ) − Y(i)

k j − ki
, for 1 ≤ i < j ≤ n  where )( )( ii ZEk = .  Now

.
)()()()(
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ij

ij
ji kk

kk

kk

YEYE
lE  Each lji  can be considered a

random observation from a population with mean σ; therefore, E(mean(lji )) = σ .

However, to be unbiased, the scale estimator, )()( jilmedianys =τ , depends on the

symmetry of the distribution of the correlated lji .  The quantity τs is either the mean of the

two central order statistics or the middle order statistic of the lji  whose expectation is, in

any case, σ.  Table 2 shows that τs  appears to have a slight positive bias in estimating SD.

If ,)( iii ksyres τ−=  ni ,,2,1 L=  and σστ >= +))(( ysE , then
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iiiii kkksyEresE +−+=−= σσµτ )()()( )(  ik)( +−+= σσµ .  Because each residual,

resi , has expectation possibly slightly less than µ  for ki > 0 ,  but slightly greater for

ki < 0 ,  the expectation of the median of the residuals may be approximately µ.  In the

simulation results, the positive bias in the estimation of scale is apparent; but no bias

seems to appear in the estimation of location.

The "equal in distribution" technique described in (Randles and Wolfe, 1979, Section 1.3)

can be used to show that )(ysτ  and )(ylτ  are uncorrelated statistics.  Of course, for the

normal distribution, the classical estimate of σ and the sample mean are independent.

Whether or not this independence result is true for the estimators based on other CCs is

unknown.

This section concludes with a proof that the location estimator, )(ylτ , is symmetrically

unbiased.  In CES, it is necessary to first estimate the scale and then the location.

Assume ** YY
d

−=− µµ ; i.e. *Y is symmetric about µ.  Then without loss of generality,

µ−= *YY  is symmetric about zero.  The distribution function )(yF is

)()()(
σ

µ−
≤=≤=

y
ZPyYPyF .  Because µ = 0, niZY ii ,,2,1, )()( L== σ .  The

estimate of the standard deviation with Kendall’s τ, τs , is
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τ  where )( )( ii ZEk = .  Because
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)()( )()()()( , it is expected that τs  would be a reasonably

good estimate of the standard deviation σ.

Earlier it was shown in Lemma 1 that s(Y) = s(-Y), but it is constructive to show this again

specifically for Kendall’s τ; that is, )()( ysys −= ττ .  Let X = -Y or for a random

sample ii yx −= .  Then for order statistics, niyx ini ,,2,1,)1()( L=−= −+  and
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Lemma 3: Kendall’s τ estimate of the median of a symmetric distribution has a symmetric

distribution about the true population median (mean); that is, ).()( ylyl ττ −=−

Proof: The estimate of the population median based on the residuals of the scale estimate is

))(()( )( jj kysymedianyl ττ −=  .  Let, as above, X = -Y.  Then,

( )jj kxsxmedianxlyl )()()( )( τττ −==−

       ( )( )jnjn kxsymedian −+−+ −−−= 1)1( )(τ

     ( )( )jnjn kxsymedian −+−+ −−= 1)1( )(τ

( )( )jnjn kysymedian −+−+ −−−= 1)1( )(τ

( )( )jnjn kysymedian −+−+ −−= 1)1( )(τ  because )()( ysys −= ττ
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 ( )( )jj kysymedian )()( τ−−=

                          )(ylτ−=

By theorem 1.3.16 in (Randles and Wolfe, 1979, p. 20), since )()( and ylylYY
d

ττ −=−−= ,

the distribution of )(ylτ  is symmetrically distributed about zero.  Thus, we can say that

)(ylτ  is symmetrically unbiased. ♦

6. A Simulation Study of the Scale and Location Estimates of GDCC and Kendall's τ

Although the expected values of the order statistics are available, e.g., (Harter and

Balakrishnan, 1996) up to n = 400 for the Normal, most statistical computer packages do

not have them readily available.  They can be approximated — see (Gibbons and

Chakraborti, 1992, Section 2.6) — and a first approximation is given by

ni
n

i
,,2,1),

1
(1 L=

+
Φ− whereΦ  is the distribution function of a N(0, 1) random variable.

This approximation seems to work well but, rather than 
1+

=
n

i
pi , other pi ’s are

recommended for different sample sizes (David, 1970 and Looney and Gulledge, 1985).  In

this simulation study on location and scale estimation, S-Plus was used since Φ−1 and

other distribution functions are available and the language lends itself to investigative

inquiry (Venables and Ripley, 1994).

The estimation of σ and µ by the two NPCCs is studied via computer simulation.  In Tables

1 and 2, the normal distribution was used with mean 10, standard deviation 7, and sample
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size n = 25.  Kendall's τ and GDCC were compared separately to the classical estimators,

sample standard deviation (SD) and sample mean.  The first part of each table gives the

mean estimate of the parameters, µ or σ; and the second part gives the square root of the

sample mean square error of the estimators, MSE , based on the four sets of runs of 250

simulations labeled 1, 2, 3, 4.  Table 1 gives the results of GDCC compared to SD and the

classical median and mean.  Note that mean values of sgd  are slightly high but that lgd  is

nearly unbiased.  The MSE of sgd  is somewhat higher than SD, but the most interesting

aspect is that the MSE of lgd  is lower than the classical median and just barely larger

than the MSE of the sample mean.

Table 1             Comparison of GDCC and Classical Estimates for σ and µ 

σ = 7 µ = 10

Run # sgd SD
gdl Median Mean

1 7.28 6.97 9.82 9.87 9.82

2 7.28 7.00 10.10 10.06 10.11

3 7.13 6.91 9.88 9.82 9.91

4 7.09 6.83 9.92 9.86 9.91

 ErrorSquare Mean

σ = 7 µ = 10

Run # sgd SD
gdl Median Mean
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1 1.33 0.97 1.36 1.67 1.34

2 1.31 1.03 1.43 1.73 1.38

3 1.43 1.06 1.49 1.88 1.45

4 1.33 1.06 1.33 1.64 1.31

All Runs:  n = 25, N(10, 7);  250 simulations for each run.

Each entry is the mean of the results of 250 simulations.

These same observations are repeated for Table 2 with Kendall’s τ compared to the

classical estimators.  The MSE  for τs is lower than that of sgd  and only about 17% higher

than that of SD.

Table 2             Comparison of Kendall’s τ and Classical Estimates for σ and µ 

σ = 7 µ = 10

Run #
τs SD

τl Median Mean

1 7.22 6.92 9.90 9.83 9.90

2 7.14 6.90 9.98 9.99 9.99

3 7.17 6.86 10.05 10.01 10.04

4 7.34 7.09 10.15 10.09 10.15

 ErrorSquare Mean

σ = 7 µ = 10

Run #
τs SD

τl Median Mean
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1 1.11 0.95 1.42 1.83 1.37

2 1.06 0.95 1.35 1.67 1.31

3 1.15 1.00 1.47 1.78 1.42

4 1.23 0.99 1.42 1.79 1.41

All Runs:  n = 25, N(10, 7);  250 simulations for each run.

Each entry is the mean of the results of 250 simulations.

Tables 3 and 4 again compare GDCC and Kendall’s τ methods to classical methods.

Twenty of the random observations are from N(10, 7), but now 5 of the 25 observations

can be outliers.  On Runs 1 and 2, the five outlier observations are from a N(10, 35)

random variable; and on runs 3 and 4, the five outlier observations are from N(17, 35).

Thus, runs 1 and 2 have centered outliers while runs 3 and 4 have right-biased outliers.

Table 3 gives results for GDCC, and Table 4 for τ.  By far, sgd  is the best estimator of

scale with less bias and smaller MSE ; τs is also far better than SD.  For location, all the

median methods are much better than the classical mean.  The classical median and the

median methods lgd  and τl  have mean values close to 10, and the values of MSE  are not

too different although lgd  did have MSE  lower than the classical median in all four sets

of simulations.  It appears that the NPCC method of scale and location gives good

protection against a few errant observations and, at the same time, loses very little if all the

data are good.  Because of this, the CES procedure should not be ignored.
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Table 3  Comparison of GDCC and Classical Estimates for σ and µ , Data with Outliers

σ µ 

Run # sgd SD
gdl Median Mean

1 9.59 15.82 10.06 10.12 9.97

2 9.65 15.60 10.08 10.13 10.35

3 9.59 16.57 10.67 10.52 11.45

4 9.71 16.71 10.55 10.41 11.42
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                                                    ErrorSquare Mean

σ µ 

Run # sgd SD
gdl Median Mean

1 3.13 9.83 2.10 2.27 3.39

2 3.33 9.78 1.91 1.97 3.04

3 3.16 10.55 2.14 2.21 3.68

4 3.20 10.78 2.10 2.13 3.82

Runs 1 and 2:  n = 25, 20 of N(10, 7) & 5 of N(10, 35);  250 simulations for each run.

Runs 3 and 4:  n = 25, 20 of N(10, 7) & 5 of N(17, 35);  250 simulations for each run.

Each entry is the mean of the results of 250 simulations.

Table 4    Comparison of Kendall’s τ and Classical Estimates, Data with Outliers  

σ µ 

Run #
τs SD

τl Median Mean

1 10.23 16.06 9.91 9.90 10.01

2 10.37 16.44 9.67 9.80 9.36

3 10.29 16.76 10.71 10.41 11.77

4 10.30 16.37 10.51 10.30 11.27
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 ErrorSquare Mean

σ µ

Run #
τs SD

τl Median Mean

1 3.78 10.02 2.05 2.11 3.25

2 3.79 10.34 2.07 2.00 3.53

3 3.78 10.65 2.07 1.97 3.75

4 3.81 10.36 2.16 2.03 3.67

Runs 1 and 2:  n = 25, 20 of N(10, 7) & 5 of N(10, 35);  250 simulations for each run.

Runs 3 and 4:  n = 25, 20 of N(10, 7) & 5 of N(17, 35);  250 simulations for each run.

Each entry is the mean of the results of 250 simulations.

(Chambers, Cleveland, Kleiner, and Tukey, 1983) gives background on the general use of

Quantile-Quantile plots and in Section 6.8 gives the parameters that are estimated by the

intercept and slope of a line fit to the data.  Thus, for example, if a test of fit is desired for

a Gamma random variable and then a CES linear regression is fit, the parameters estimated

by this fitted line are given.  These authors use a different choice of pi  not 
1+n

i
.

7. Hypothesis Testing and Confidence Intervals for σ

There is an acute need for a better scale analysis because most scale tests under the

normality assumption lead to unreliable results. This section will indicate how such a test

is performed utilizing the work of (Gee, 2002) and (Gideon and Rummel, 1992) as well as

the earlier sections of this paper.  With the speed of computers and their many functional
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statistical packages, all of the following can be done by anyone wanting to implement the

strategy; e.g. critical values can be estimated by simulations.  Limited resources have not

allowed a full study of the ideas and the sorting out of which CCs might be most useful in

hypothesis testing and confidence intervals.  A generic CC notation r will be used until a

specific one is required.

Without loss of generality, we let µ = 0 and then ZY σ=  with ,0)( =YE  1)( =ZVar ,

and, as before, the vector )( oZEk = has entries which are the expectations of the

standardized order statistics.  Assume it is desired to test 00 : σσ =H  versus

0: σσ >aH .  If 0H is true, the random variable ))(,( kYkr o
o σ−  = ))(,( k

Y
kr

o

o

−
σ

 =

))(,( kZkr o −  will have a null distribution.  If 0σ is too small (i.e., Ha is true), a plot of k

and the order statistics from a random sample divided by the hypothesized standard

deviation, 0/σoy , will produce a line that is too steep; or, equivalently, the vector

)/( 0σoy – k will not be centered at zero but, in general, will have more positive values.

In any case, ))(,(
0

k
y

kr
o

−
σ

will tend to be large.  Equivalently, if 0/σoo yz = and

0),( =− kszkr o is solved for s with solution )( ozs , then )( ozs  will also tend to be

larger than one.  Thus large positive values will lead to rejection.  If sc is the slope with

0H true such that 2),( αrkszkr c
o =−  where 2/αr  is the upper α/2 point for correlation

coefficient r, then sc is the upper α/2 critical value for the statistic s.   Because of the

monotonic power function property shown below it is true that

c
oo szsrkzkr >⇔>− )(),( 2/α .
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For testing H0 against 0: σσ <aH , if Ha is true, the vectors k and kz o −  will tend to

produce too negative a correlation value, and the rejection region will be for negative

values.  Again this rejection region has its counterpart in the )( ozs statistic.

Because of the monotonicity of ),( ksykr o − as a function of s, the hypothesis test will

have the necessary monotonic power function property. Reconsider the case 00 : σσ =H

versus 0: σσ >aH .  Then if d ≥  1, for the test to have monotonic power it is required that

),())(,( kykrkdykr oo −≥− .  However,

),()
1

,(),())(,( kykrk
d

ykrkdykrkdykr oooo −≥−=−=−  since 1/10 ≤< d and r as a

function of the coefficient of the vector k is decreasing (Gideon, 1992).

To form confidence intervals, let 2/αu > 0 and 2/αl < 0 be the upper and lower critical

points of the null distribution (assuming in the case of a NPCC, α/2 is chosen to be one of

the "natural levels" of the null distribution (Randles and Wolfe, 1979, p. 122)).  Then

determine lσ , the lower endpoint, and uσ , the upper endpoint of the 1 – α confidence

interval by solving:

 2),( ασ
ukykr

l

o

=− , and

2),( ασ
lkykr

u

o

=− .
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Note that u
o

l ys σσ << )(  where )( oys  is the estimate of σ depending on the particular r

that has been chosen.

(Gee, 2002) investigated the use of five different correlation coefficients to determine

confidence intervals for σ.  These included two parametric methods: Pearson’s pr and

absolute value (see web site Publication 1) and three nonparametric methods: Kendall ‘s τ,

GDCC, and the modified footrule, or Gini’s method, (David, 1968).  Upper and lower

critical points, 2/αr  and 2/αr− , of each null distribution were developed via computer

simulations for α = 0.1 and α = 0.05 for samples of size 5 through 100.  Tables were

constructed giving the 0.025, 0.05, 0.95, and 0.975 quantile values.

(Gee, 2002) obtained, by simulations, the null distributions of ),( kZkr o − for the five

aforementioned CCs for sample sizes 5 through 100.  He included histograms of selected

null distributions with sample sizes of 5, 10, 30, 50, 75, and 100.  For the two parametric

CCs, absolute value and Pearson’s pr , with n = 5, the histograms are roughly «-shaped

with a positive bias.  As the sample sizes increase, the histograms are left-skewed.  For the

absolute value CC, the middle 50% of the data for sample size n = 30 falls in

)457.0,212.0(−  and for n = 100 in )402.0,239.0(− , while for Pearson’s pr  the middle

50% for n = 30 falls in ( )618.0,192.0−  and for n = 100 in )547.0,212.0(− .  Since the

NPCCs take on a finite number of values, larger sample sizes are required to more readily

see patterns.  For sample sizes of 30 and above, both Gini’s and Kendall’s τ are slightly

skewed to the left while GDCC is more symmetric.  For Gini’s, the middle 50% of the data

for sample size n = 30 falls in )458.0,249.0(− and for n = 100 in )410.0,280.0(− ; for
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Kendall’s τ, the middle 50% for n = 30 falls in )370.0,255.0(−  and for n = 100 in

)334.0,262.0(− ; while for GDCC the middle 50% for n = 30 falls in )333.0,267.0(−  and

for n = 100 in )320.0,260.0(− .  The minimum number of simulations used was 100,000.

8. A Numerical Example

An example from (Nemenyi, Dixon, White, and Hedstrom, 1977, p. 240) and (Iglewicz,

1983, pp. 408-410) is used in order to compare the performance of GDCC and Kendall's τ

to the robust estimators of scale that appear in these books.  It is readily apparent that these

two NPCCs used as scale estimators are among the best of the robust estimators.  Two

samples of SAT scores are used: one sample from a rural population with one outlier and a

second sample from an urban population.  The primary interest is in the comparison of the

dispersions between the samples.  (Iglewicz, 1983, p. 410) shows that the ratio of the

lengths of the boxplots of the urban SAT scores to the rural SAT scores is 2.01.  Let s and

s′  be the classical least squares estimates of standard deviation for the rural SAT scores

with and without the outlier.  Table 5 contains various estimates of scale for the rural and

urban SAT scores.  For the rural scores the sample standard deviation changes from s =

120.37 to s′  = 82.20.  The NPCCs are sgd  = 104.76 and without the outlier 87.24; for

Kendall's τ, τs = 110.04 and changes to 94.70.  Both have much smaller changes than the

classical estimates of standard deviation.  As is seen from Table 5, the ratios of the scales

of urban to rural for GDCC is 2.06 and for the Kendall’s τ, it is 1.82.  Thus, the robustness

of the NPCCs leads to reasonable results without worrying about the outlier. This

robustness feature is one of the main reasons for using NPCCs as location and scale

estimators.  The other entries in the table are taken from Iglewicz with AD, the mean
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absolute deviation; MAD, the median absolute deviation (both deviations from the median);

dF, the difference between upper and lower quartiles; sbi, the M biweight estimator of

scale using the biweight estimate of location.

Table 5:  Comparisons of different scale estimates for the two samples of SAT scores

Estimator Rural Students(1) Urban Students(2) Ratio (2)/(1)

s 120.37 176.58 1.47

s′  82.20 176.58 2.15

AD  81.62 144.54 1.77

MAD  47.00 149.00 3.17

dF  85.00 277.00 3.26

sbi 98.14 178.99 1.82

sgd 104.76 215.48 2.06

τs 110.04 200.06 1.82

Entries for s, s′ , AD, MAD, dF, sbi are from (Iglewicz, 1983, pp. 410, 424)

9. Summary and Comments

This paper is the third in a series of papers promoting the use of the geometry induced by a

CC as a general estimating tool.  In implementing these procedures, Pearson's pr , for the

most part, parallels least squares procedures.  For NPCCs GDCC and Kendall’s τ, a

computer component is needed with the maximum-minimum tie breaking method first
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suggested in (Gideon and Hollister, 1987).  Computer programs can be written fairly easily

for Kendall's τ since a closed form regression estimation formula exists.  For GDCC a C-

language program has been written which combines the tie breaking procedure for the CC

calculation and simple linear regression so that together these can be used in a variety of

situations; e.g, multiple linear regression.  It is a remarkably fast routine that makes higher-

level problems feasible.  An applied user would need a statistical software package to

implement these ideas for general use.  For this to happen, it needs to be ascertained how

the "system of estimation" provided by a particular CC compares, say, to least squares.

These authors are convinced that since GDCC is an "area equalizer" type estimator, it has

the properties needed in real data analysis.  However, the research effort needed to

compare systems is beyond the means of the authors; the authors are thankful for S-Plus that

makes available efficient research languages that have allowed for the progress thus far.

Master's students and a few Ph.D. students have provided inspiration and technical help.

Censored data problems have been minimally studied and the ideas of this paper extend to

such problems.  They have not been included because of length considerations and

hopefully will be included in a later paper. The following code is used to find the max and

min upon which an NPCC is computed and then averaged to obtain a unique CC value. The

paired vector data is (x,y).  Other computer languages can implement the following

commands:

rank(x) gives the ranks of x, usual average ranks used for ties;

order(y, x) contains indices of data elements ( y ) in ascending order (first

integer is subscript of smallest element of y ) with y-ties broken by
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values in x ;

n is length( x ), the size of the vectors;

<- denotes: evaluate right-hand side and put in left-hand side;

n1n <- 1:n puts the integers 1,2,..,n in n1n;

nn1 <- n:1 puts the 1st n integers in reverse order in nnl;

x[order(y)] gives the ordering of x that corresponds to the ascending ordered y.

max min

1 xt <- x[order(y,x)] xr <-n+1-rank(x)

2 uv <- n1n[order(xt,n1n)] xt <- x[order(y,xr)]

3 ----------------------- uv1 <- n1n[order(xt,nn1)]

The vector uv is now a permutation of the first n positive integers upon which a NPCC can

be computed.  The vector uv corresponds to the ranks of the y-data after the x-data has been

ordered.  Compute the NPCC on uv for the max and uv1 for the min and average the two

results; this computation is one of the standard algorithms to compute Kendall's τ.

As an example, let x = (1, 5, 6, 6, 3, 6, 1, 5, 4, 5, 6, 3, 3) and

y =(7, 2, 6, 5, 6, 6, 2, 7, 6, 2, 6, 1, 4) then uv = (2, 12, 1, 5, 7 ,8 ,3, 4, 13, 6, 9, 10, 11) and

uv1 = (13, 4, 11, 5, 1, 10, 12, 3, 2, 9, 8, 7, 6).  Kendall's τ on uv is 0.4102564 and on uv1

is -0.1794872 and the value of τ for the x-y data is the average of these two values which

is 0.115385.  One can check the logic by hand on the x-y data by sorting and breaking tied

ranks to either maximize or minimize the final result.  GDCC = 1/3 for uv and 0 for uv1 so

the average is 1/6.  For Pearson's, 2089.0=pr .
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There is one last observation for Kendall’s τ.  Let the usual location two-sample problem

be set up through regression; i.e., 0 and 1 are the x-values and the y-values are the two sets

of data plotted in the vertical directions.  Then the slope of the scale regression line (1)

with Kendall’s τ is the usual Hodges-Lehmann nonparametric location estimate,

}{
, jiji

yxmedian − .  This may also be true, in general, for GDCC, but, at this time, what is

known is that it was always true for all the examples examined.
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SD as a slope
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