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1. Abstract

This paper, third in a series on the correlation estimation system (CES), shows how to use
any correlation coefficient to produce an estimate of location and scale. Since the normal
distribution is so widely used, the method isillustrated using this distribution. Analyzers
of normal data are advised to graph a quantile plot to check on the normality assumption

before performing their data analysis; (Looney and Gulledge, 1985) shows how to use

Pearson's r, asatest of normality. This paper shows that any correlation coefficient can

be used to fit asimple linear regression line to a graph and then the slope and intercept are
estimates of standard deviation and location. Because arobust correlation will produce
robust estimates, this CES can be recommended as atool for everyday data analysis.
Tables of mean square error for ssmulations indicate that the median with this method using
arobust correlation coefficient appears to be nearly as efficient as the mean with good data
and much better if there are afew errant data points. Hypothesistesting and confidence

intervals are illustrated for the scale parameter.

Key words. simple linear regression, robust estimates, hypothesis testing, confidence

intervals



Thiswork dependsin part on earlier unpublished work of Gideon and othersand is

available on the web site: www.math.umt.edu/gideon. Some of the references will refer to

papers posted at this web site.

2. Introduction

Asin (Gideon, 1992) three correlation coefficients (CC) are used: Pearson's r,, Kendall's
t, and Greatest Deviation Correlation Coefficient (GDCC or r, ), (Gideon and Hollister,

1987). The starting point for each estimation technique is exactly the same. The CCs
chosen illustrate existing techniques: Pearson's, classical statistics; GDCC, robust
methods, Kendall’st, a well-known nonparametric (NP) CC. A problem in (Randles and
Wolfe, 1979, p. 12, problem 1.2.14) indicates how to estimate location and scale from
order statistics. This method is reviewed and then its connection to Pearson's r, is made

for data from anormal distribution. Note, however, that the method is genera for any

distribution that can be standardized.

Let Y = +s Z where Zisnormal with mean 0 and standard deviation 1, denoted by
Z~N(0D;then Y ~N(n,s ). Thenfor the order statistics Y3y <Y5) <-<Y(,
Y(i) =m+s Z(i) and E(Y(i)):rT +SE(Z(i)). Let ki = E(Z(i)); i=12,---,n. Fromthe

symmetry of the standard normal, note that 601 k = 0. (Randles and Wolfe, 1979) next



defineD(ms ) = 4 (Y, - (m+s k,))?. The estimatorsmands that are found to minimize
i=1

D are unbiased for mand s, respectively.

This solution is next related to Pearson's r,,. In general, let k be the vector of the expected
values of the order statistics of Z, and lety° be the order statistics of asamplefrom VY;i.e.,
y° represents the order statistics y,, < Y, <...< Y, If thefollowing equation is solved
for susing any r, then s estimates s:

r(k,y°- sk)=0. (1)
Using Pearson's 1 for ther let the uncentered residuals y° - sk be denoted by res and

compute the mean of res after s has been determined. This mean estimates m; in fact, these
latter two estimates are identical to the ones coming fromD(1,s ). From Publication 2,

Correlation in Smple Linear Regression (see www.math.umt.edu/gideon), with x = k and

y = y°, the regression equation (1) of that paper becomes the above (1), called the scale

o]
Ky,
form of the regression equation. The solution is s = ao ,yz(,) and
ak
mean(res) =y - ST' =Y. Notethat the usua estimate of the mean is obtained. For the

estimateof s the statistic sis unbiased because

E(s) = é. ki E(Y) _ é. k (m+s k) _ I’Té k +s é K2 .
akK ax’ 3 K2



The use of equation (1) with Pearson's r as a scale estimation technique is now related to

two existing scale estimators. Motivated from (Downton, 1966), |et

iado sl
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k= (n+1)~/5.:.83i_ 2 g:?’ @

7 éng eloy,

The solution for sin equation (1) with thisk is related to both Gini's mean difference

(Randles and Wolfe, 1979) or (Hettmansperger, 1984) and a method of Downton (1966).

Gini's mean difference estimate of scaleis D(y) :iékj Yiy - y(j)‘ , and Downton's
0

=

. o _p g . n+1)
estimate of scale for the normal distribution is S Y -a (i- S Y .
Qi=1

&2;

It can be shown that sy, = % D(y) so that Gini and Downton are essentially the same, and

both can be obtained from equation (1) with the k givenin (2). Thus, with today's
computers and statistical packages, al of the above estimates of scale can be obtained
easily from the regression setting (equation (1)) with the ordered datay and an appropriate

k.

(D'Agostino, 1971 & 1973) used Downton's estimate of scale divided by the classical least
sguares estimate of s to perform atest of normality. The estimate of s from equation (1)

withk; = E(Z(i)) , 1 =1,2,---,n could also be used in the D'Agostino normal test of fit with

this s replacing the classical estimate.



2 _ )2
An interpretation of the usua SD = % asthe slope of astraight line is next
n_

used as atransition to a more geometrical view of scale estimates. Again consider the data
ordered y, <y, <---<y, andlet constant c= ,/12/(n(n+1)) . For the horizontal axis

pointslet h=- - 1,- n- 3,- n- 5~--0,1-~~n_ 5’n- 3’n- ! For simplification only
2 2 2 2 2 2

the case n odd isused so that h consists of n integers centered at zero (the even case only

requires a change in notation). Now consider the set of points (ch, y°) where the

superscript indicates the ordered vector of data points. A line whose slopeis SD is chosen

below to go through these points. Let ahorizontal line be drawn at the mean of the data, y,
on the vertical axis. The distance of each order statistic from the y line measuresits
departure from that line; the SD is an overall measure of departure from the horizontal. A

plot of (ch, y°) roughly createsan angle ¢ from the horizontal with tang = 3D..

With this motivation, a straight line with Slope b = SD and intercept yis now constructed

through the points (ch, y°) . This requires that the line be chosen so that the points bch

have the same cumulative squared distance from the yline. Hence b is chosen so that

n-1

aly-y)?= é (bhc)? . Theline with slope b defines an angle q with the horizontal.

por1
2

-

h? = n(n- )(n+1)

12 and using the definition of ¢, the b that
1

Qay |

n-1
Because 5 h®=2
b1

>
1l

2
satisfies the above equation is b = SD. Thefigure at the end of this paper shows thisline

for anormal random sample, n = 25 with mean 10 and theoretical standard deviation 7.



For thisdata y = 10.56 and SD = 7.39 and so the vertical values are 10.56 + 7.39* (ch) .

The slope b isthe same as SD and represents the variation in the data. A steeper slope

(or alargerq ) implies more variation and a 0 slope (or g = 0) indicates no variation. The

range of the plot on the horizontal axis, regardless of the data set, is roughly between + 3

for al n and has equidistant points.

The plotted points (ch, y°) can be used to illustrate the CES way of estimating s . The

scale regression equation (1) is solved for s, the lope, using Pearson's r,, . The equation

isr,(ch, y° - s)hc) =0. Itisstraightforward to obtain s, =

For the data used on the Figure s, = 7.24 and for GDCC the scale estimate was 6.80.
After afew computer runsit wasclear that s, and SD or b have about a 99% Pearson

correlation. However, s, isdlightly biased. An adjustment to the constant ¢ would

makesp unbiased, which iswhat Downton’ s estimate does. His constant is L as
(n+)vp

compared to c. Theratio of Downton’s constant to ¢ is ,/3(n+1)/pn. Asssuming
(n+1)/n @l thisisabout 0.9772. Downton constructed his constant so that the r, scale

regression solution is unbiased. Downton used linear combinations of order statistics as

his approach rather than using correlation as is done here.

In addition to using CCsin tests of fit (distribution), the CC can be used to estimate

location and scale as in the example above. Equation (1) can be solved with any



correlation coefficient, r. The next section continues the demonstration of the method
using GDCC and Kendall’st. After obtaining s, either the mean or median of the

uncentered residuals is used to obtain alocation estimate of the y-data.
3. Interpreting Equation (1)

When r, isused for r in equation (1) the solution s must be found numerically as no closed

form solution is known, but for Kendall'st, the equationt (k, y° - sk) =0 is satisfied by

B j) - Yy

5
K K = (see web site Publication 2). Because of the discrete nature of
i M

2

s =median

both of the NPCCs, arange of solutionsis possible, so aunique sis defined by letting
s=(s +s,)/2where, s, =sup{s:r(k,y° - sk) >0} and s, =inf{s:r(k,y°- sk) <G,
This averaging obtains a unique solution for either r = r , or r =t, or for that matter any

NPCC.

Note that the left-hand side of equation (1) isafunction of y, s = s(y). Thefunction s(y)
has the following form for each of the three CCs considered:
1. for Pearson's r,, s(y) isa continuous function and (1) has a closed form
solution;
2. for GDCC, s(y) isastep function based on aNPCC and (1) hasonly a
numerical solution;
3. for Kendall’st, s(y) isastep function based on aNPCC and (1) has closed

form solution.



3. Standard Properties of the Scale Estimator, s(Y)

The function s(Y) is next shown to be location invariant, scale equivariant, and for
symmetric distributions, s(Y) = -Y); i.e. itiseven. Because CCsarelocation invariant,
S(Y +h*1) = 5(Y), where h isany constant and 1 isan-vector of all 1sand so s(Y) is
location invariant. Keep in mind that &l data are ordered even though the "superscript °"
notation is not always used. (Rousseeuw and Leroy, 1987) use the term equivariant for
statistics that transform properly. Note s(Y) isscale equivariant; i.e., if h > 0isaconstant
and X = hYisascale change, then it iseasy to show s(hY) = hs(Y). Because

r(k, X - s(X)k) =0 and CCs are scale invariant, seeing that

r(k, X - hs(Y)k) =r(k, hY - hs(Y)k) =r(k,Y - s(Y)k) =0, verifiesthat hs(Y) is s(X),

that is, s(hY) =hs(Y). The evenness of s(Y) for aNPCC requires alemma.

Lemma 1: Given aNPCC in equation (1) and a symmetric distribution about O,
s(Y)=4-Y).

Proof: Since the distribution is symmetric about 0, K,,..; =-K;, 1 =1,2,---,nand for the

ge— Ya 90 89 Yoy O
¢" Yo & ¢ Yo+
vector k, (- k)° =k° =k. Itisalsotruethat -y)° :g Pl :g Pl
¢ Y™ €Yo T
g' Yo g g' Yo g



In equation (1),0=r(k,(- y)° - s(- y)k) =r((- K)°,(- ¥)° - s(- y)* (- k)"), and (- k)° and
(- y)°are ordered min to max. Without the superscript °, they still correspond but are now

ordered max to min. So in equation (1),

0=r((- k)(- y)- s y*C k))=r k- (y- sl- y)* k) =rlky- - y)* k),

the right-most term being equal to zero showsthat s(Y) = -Y).

Thislemmais easily demonstrated for particular cases on a computer.

5. Motivation and Standard Properties of the CES Location Estimator of Y

Because CCs are the estimation tools, the location estimator of Y, say I(Y), is motivated

through regression; the result for Pearson's r , isthe classical mean of the data, whereas for

Kendall’st and GDCC it isthe median. To motivate these results, first consider data from
two independent random variables X and Y with sample sizes mand n, respectively. The
location difference between the two samplesis studied viaregression. On a coordinate
plane, let the x-data be plotted as (0, x;) for 1LE£ i £ m and they-dataas (L y,)for 1£i £n.
If thereis no difference in the X and Y locations, then a line connecting the center of the x-
data to the center of the y-data should be nearly parallel to the horizontal axis. To estimate
any possible location difference, aregression lineis fit with a coded variable and the (x,

y) data. Let the column vector ¢ of dimension m+ n be given by mOsfollowed by n 1sand

them+ n dimension vector v be (X, X,, X, Y, Y,»-, Y, ). Treat ¢ as the regressor

variable and v as the response variable. Then the CC regression equation is

r(c,v- Ic) =0 where | isalocation statistic. It is straightforward to solve this equation
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with Pearson's 1, toobtain | =y - X. Thus, thedopeisy- X and X +slope=Yy. Forthe

one-sample problem, let al of the x- data be zero; then the estimate of the location of the y-

dataisthe slope y since X is zero.

Tosolvet (c,v- Ic) =0 itisnecessary to work with the elementary slopes of c and v,

V-V
-, wherethey arefinite, that is, where ¢, - ¢ =+1. Thisresultsin | being the

Cj-(:l

median of the mn elementary differences y; - x;. For the one-sample case, al thex'sare
zero, so | = median(y;) . Asdiscussed in (Gideon and Rummel, 1992) if the x-data are all
zeros and have the same dimension as Y, namely n, and in addition if the tied value method
(Gideon and Hollister, 1987) is used in the calculation of the NPCCs, then for both t and
GDCC the median is obtained as the solution to the regression equation, r(c,v- Ic) =0.

This has not been proven for GDCC, but only demonstrated via extensive computer
simulations. This computer work and analysis shows that both the one- and two-sample

problems posed in aregression setting can be performed for NPCCs as has been done for

the least squares (Pearson's r ) regression method. The implication isthat afertile field of

research awaits generalization to analysis of variance viaregression with NPCCs.

Because the location estimator for Pearson's r, isthe usua Y, it is obviously an odd
trandation statistic; i.e. alocation statistic. For the other two CCs,
I(y) = median(y® - sk) where s=§ or s=s, isthesolution of r(k,y- sk) =0 andr is

t or GDCC respectively.
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Lemma 2: For NPCCst and GDCC and for a symmetric distribution,
[(y) = median(y® - sk)isan odd tranglation statistic.
Proof: I(- y) = median((- y)° - sk) = median(- y)° - s(- k)°)

= median((- y)- (- k)) = - median(y- sk)=-1(y)
For trand ation, with constant h,
I(y +h) = median((y + h)° - sk) =h+median(y°® - sk) =h +I(y).

Therefore, the location estimator with NPCCs aso has the properties of alocation statistic.

Because there is a closed form solution of the scale regression equation (1) using Kendall's

t, it is possible to make a closer examination of its scale and location estimates.

Y- Y
Let the elementary slopes be ; :(li)—K('),for 1£i <j£nwhere k =E(Z;). Now
-k
E(Y) - E(Y,) _ (m+sk;)- (m+sk;)
E(l;) =—2 Q- = ' =S. Each I;; can be considered a
k, - k k - k

random observation from a population with mean s;; therefore, E(mean(l;;)) =s .

However, to be unbiased, the scale estimator, § (y) = median(l ;) , depends on the

symmetry of the distribution of the correlated ;. The quantity s, is either the mean of the

two central order statistics or the middle order statistic of the I;; whose expectation is, in

any case, s. Table2 showsthat s appearsto have adlight positive biasin estimating SD.

If res =Y, - sk, i =12,--,nand E(5 (y)) =s © >s , then
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E(res) =E(y, - s k)=(m+sk)-s "k =m+(s - s ")k . Because each residual,
res, has expectation possibly dightly lessthan r for k >0, but dightly greater for
k <0, theexpectation of the median of the residuals may be approximately m Inthe

simulation results, the positive bias in the estimation of scaleis apparent; but no bias

seems to appear in the estimation of location.

The"equal in distribution™ technique described in (Randles and Wolfe, 1979, Section 1.3)

can be used to show that s, (y) and |, (y) are uncorrelated statistics. Of course, for the

normal distribution, the classical estimate of s and the sample mean are independent.
Whether or not this independence result istrue for the estimators based on other CCsis

unknown.

This section concludes with a proof that the location estimator, |, (y) , isSymmetrically

unbiased. In CES, it is necessary to first estimate the scale and then the location.

d
Assume Y - m=m- Y ;i.e. Y issymmetric about m Thenwithout loss of generality,

Y =Y - missymmetric about zero. The distribution function F(y)is

- - y-nm _ _ o _
F(y)=P(Y £y) —P(ZES—). Becausem=0, Y;, =s Z;,i=1 2,---,n. The

estimate of the standard deviation with Kenddll’st, s , is

IRV
5 :median?“)—:(')? where k; =E(Z,) . Because

i<j

k,—'iB
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good estimate of the standard deviation s.

, itisexpected that s, would be areasonably

Earlier it was shownin Lemma 1 that s(Y) = s(-Y), but it is constructive to show thisagain

specifically for Kendall’st; thatis, s (y) =5 (- y). Let X=-Yor for arandom

samplex; =-y;. Then for order statitics, X;, =- Yu.iy, 1=12,---,n ad

Yo ) ¥ Yima-iy O

s ()= nediangmg= medianéae T
SC K-k 5 -k 3

Now k; =-k,,, ; by the symmetry assumption, so
@n+—i yn+ = a’ y| -
s(¥)= medlané:(l)_k(l” :med E)_k()_‘S(Y)
n+1-i n+l- g (%]

Lemma 3: Kendall’st estimate of the median of a symmetric distribution has a symmetric
distribution about the true population median (mean); that is, |, (- y) = -1, (y).
Proof: The estimate of the population median based on the residuals of the scale estimateis

I, (y) = median(y, - § (Y)k;) . Let, asabove, X = —Y. Then,
1, (-y) =1, (%) = median(x,;, - 5 (Xk;)
= median(- Y. ;- § (9 Kpa ;)
= - median(y ., ;) - § (9 Kyer ;)
= - median(y,.. ) - § ¢ Y) Ky ;)

= - median(y(,.. ) - § (¥) (ks ;)) because s (v) =5 (- y)
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=- median(y(j) - S (Y)(kj ))
=-1,(y)

d
By theorem 1.3.16 in (Randles and Wolfe, 1979, p. 20), since Y=- Y and |, (- y) = -1, (y),
the distribution of |, (y) issymmetrically distributed about zero. Thus, we can say that

[, (y) issymmetrically unbiased.
6. A Simulation Study of the Scale and Location Estimates of GDCC and Kendall's t

Although the expected values of the order statistics are available, e.g., (Harter and
Balakrishnan, 1996) up to n = 400 for the Normal, most statistical computer packages do
not have them readily available. They can be approximated — see (Gibbons and

Chakraborti, 1992, Section 2.6) — and afirst approximation is given by

iy
F 'l(n—+1), I =1,2,---,nwhereF isthe distribution function of aN(0, 1) random variable.

[
This approximation seemsto work well but, rather than p; = PeE other p,’sare

recommended for different sample sizes (David, 1970 and Looney and Gulledge, 1985). In
this simulation study on location and scale estimation, S-Plus was used since F~* and
other distribution functions are available and the language lends itself to investigative

inquiry (Venables and Ripley, 1994).

The estimation of s and mby the two NPCCsiis studied via computer simulation. In Tables

1 and 2, the normal distribution was used with mean 10, standard deviation 7, and sample
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sizen =25. Kendall'st and GDCC were compared separately to the classical estimators,

sample standard deviation (SD) and sample mean. Thefirst part of each table givesthe

mean estimate of the parameters, mor s; and the second part gives the square root of the

sample mean square error of the estimators, / MSE , based on the four sets of runs of 250

simulations labeled 1, 2, 3, 4. Table 1 givesthe results of GDCC compared to SD and the

classical median and mean. Note that mean values of sy aredlightly high but that 144 is

nearly unbiased. TheMSE of Syd 1S somewhat higher than SD, but the most interesting

aspect isthat the4/ MSE of lga islower than the classical median and just barely larger

than the//MSE of the sample mean.
Table 1l Comparison of GDCC and Classical Estimatesfor s and m
s=7 m= 10
Run # Syd SD | o Median Mean
1 7.28 6.97 9.82 9.87 9.82
2 7.28 7.00 10.10 10.06 10.11
3 7.13 6.91 9.88 9.82 9.91
4 7.09 6.83 9.92 9.86 9.91
JMean Square Error
s=7 m= 10
Run # Syd SD | Median Mean

gd



1 1.33
2 131
3 143
4 133

All Runs. n =25, N(10, 7); 250 simulations for each run.

Each entry is the mean of the results of 250 smulations.

These same observations are repeated for Table 2 with Kendall’st compared to the

0.97

1.03

1.06

1.06

1.36

143

1.49

133

1.67

1.73

1.88

1.64

16

1.34

1.38

145

131

classical estimators. The4/MSE fors islower than that of Sya @nd only about 17% higher

than that of SD.
Table 2 Comparison of Kendall’st and Classical Estimatesfor s and m
s=7 m=10
Run # S SD I Median Mean
1 1.22 6.92 9.90 9.83 9.90
2 7.14 6.90 9.98 9.99 9.99
3 7.17 6.86 10.05 10.01 10.04
4 7.34 7.09 10.15 10.09 10.15
JMean Square Error
s=7 m= 10
Run # S SD I Median Mean



1 111
2 1.06
3 1.15
4 1.23

All Runs. n =25, N(10, 7); 250 simulations for each run.

Each entry is the mean of the results of 250 smulations.

Tables 3 and 4 again compare GDCC and Kendall’st methods to classical methods.

0.95

0.95

1.00

0.99

142

1.35

147

142

1.83

1.67

1.78

1.79

17

1.37

131

142

141

Twenty of the random observations are from N(10, 7), but now 5 of the 25 observations

can be outliers. On Runs 1 and 2, the five outlier observations are from aN(10, 35)

random variable; and on runs 3 and 4, the five outlier observations are from N(17, 35).

Thus, runs 1 and 2 have centered outliers while runs 3 and 4 have right-biased outliers.

Table 3 givesresults for GDCC, and Table 4 for t. By far, sy isthe best estimator of

scale with less bias and smaller MSE ; s isalso far better than SD. For location, all the

median methods are much better than the classical mean. The classical median and the

median methods |y and |, have mean values close to 10, and the values of /MSE are not

too different athough |4y did haves/MSE lower than the classical median in all four sets

of smulations. It appears that the NPCC method of scale and location gives good

protection against afew errant observations and, at the same time, loses very littleif all the

data are good. Because of this, the CES procedure should not be ignored.
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Table 3 Comparison of GDCC and Classical Estimates for s and m, Datawith Outliers

S m

Run # Syd SD | g Median Mean
1 9.59 15.82 10.06 10.12 9.97

2 9.65 15.60 10.08 10.13 10.35

3 9.59 16.57 10.67 10.52 11.45

4 9.71 16.71 10.55 10.41 11.42
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JMean Square Error
s m
Run # Syd SD | Median Mean
1 3.13 9.83 2.10 2.27 3.39
2 3.33 9.78 191 197 3.04
3 3.16 10.55 214 221 3.68
4 3.20 10.78 2.10 213 3.82

Runs1land 2: n=25, 20 of N(10, 7) & 5 of N(10, 35); 250 simulations for each run.
Runs3 and 4: n=25, 20 of N(10, 7) & 5 of N(17, 35); 250 simulations for each run.

Each entry is the mean of the results of 250 smulations.

Table4 Comparison of Kendall’st and Classical Estimates, Data with Outliers

S m

Run # s SD I Median Mean
1 10.23 16.06 9.91 9.90 10.01

2 10.37 16.44 9.67 9.80 9.36

3 10.29 16.76 10.71 10.41 11.77

4 10.30 16.37 10.51 10.30 11.27
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JMean Square Error
s m
Run # s SD I Median Mean
1 3.78 10.02 2.05 211 3.25
2 3.79 10.34 2.07 2.00 3.53
3 3.78 10.65 2.07 1.97 3.75
4 3.81 10.36 2.16 2.03 3.67

Runs1land 2: n=25, 20 of N(10, 7) & 5 of N(10, 35); 250 simulations for each run.
Runs3and 4: n=25, 20 of N(10, 7) & 5 of N(17, 35); 250 simulations for each run.

Each entry is the mean of the results of 250 smulations.

(Chambers, Cleveland, Kleiner, and Tukey, 1983) gives background on the general use of
Quantile-Quantile plots and in Section 6.8 gives the parameters that are estimated by the
intercept and sope of alinefit to thedata. Thus, for example, if atest of fit isdesired for
a Gamma random variable and then a CES linear regression isfit, the parameters estimated

[
by thisfitted line are given. These authors use adifferent choice of p; not PYSE

7. Hypothesis Testing and Confidence Intervals for s

There is an acute need for a better scale analysis because most scale tests under the
normality assumption lead to unreliable results. This section will indicate how such atest
is performed utilizing the work of (Gee, 2002) and (Gideon and Rummel, 1992) aswell as

the earlier sections of this paper. With the speed of computers and their many functional
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statistical packages, all of the following can be done by anyone wanting to implement the
strategy; e.g. critical values can be estimated by simulations. Limited resources have not
allowed afull study of the ideas and the sorting out of which CCs might be most useful in
hypothesis testing and confidence intervals. A generic CC notation r will be used until a

specific oneisrequired.

Without loss of generality, welet m=0andthen Y =s Z with E(Y) =0, Var(Z) =1,
and, as before, the vector k = E(Z °) has entries which are the expectations of the

standardized order statistics. Assumeitisdesiredtotest H,:s =s, versus

YO

H,:s >s,. If H,istrue, therandom variable r(k, (Y° - s ;K)) = r(k, (S—- k) =

a-
[o]

r(k, (Z° - k)) will have anull distribution. If s ,istoo small (i.e., Ha istrue), aplot of k
and the order statistics from arandom sample divided by the hypothesized standard
deviation, y°/s ,, will produce alinethat istoo steep; or, equivaently, the vector

(¥° /s ) —kwill not be centered at zero but, in general, will have more positive values.

(o]

In any case, r(k,(Sy—- K)) will tend to be large. Equivalently, if z° =y°/s ;and
0

r(k, z° - sk) =0issolved for swith solution s(z°), then s(z°) will also tend to be

larger than one. Thus large positive values will lead to rejection. If s, isthe slope with
H,truesuchthat r(k, z° - s;k) =r,,, wherer,,, isthe upper a/2 point for correlation

coefficient r, then s_ is the upper a/2 critica value for the statistic s. Because of the
monotonic power function property shown below it is true that

rk,z°-k)y>r,,, 0 §z°)>s..
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For testing H, againstH , :s <s, if H_istrue, thevectorsk and z° - k will tend to
produce too negative a correlation value, and the rejection region will be for negative

values. Again thisrejection region hasits counterpart in the s(z°) statistic.

Because of the monotonicity of r(k, y° - sk) asafunction of s, the hypothesis test will
have the necessary monotonic power function property. Reconsider thecase H, :s =s,

versus H, :s >s . Thenif d ® 1, for the test to have monotonic power it isrequired that

r(k, (dy°) - k) 2 r(k, y° - k). However,

1
r(k, (dy°®)- k) =r(k, dy° - k) =r(k, y° - ak)3 r(k,y° - k) since 0<1/d £1andr asa

function of the coefficient of the vector k is decreasing (Gideon, 1992).

To form confidence intervals, let u,,,>0and I_,,< 0 be the upper and lower critical

points of the null distribution (assuming in the case of aNPCC, a/2 is chosen to be one of
the "natural levels' of the null distribution (Randles and Wolfe, 1979, p. 122)). Then

determine s |, the lower endpoint, and s ,, the upper endpoint of the 1 —a confidence

interval by solving:

r(k,;’—- k) =,),, and

y° _
rk, 2—- k) =1_,.
( . ) =l

u
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Notethat S| < S(Y°) <S, where s(y°) isthe estimate of s depending on the particular r

that has been chosen.

(Gee, 2002) investigated the use of five different correlation coefficients to determine

confidence intervalsfor s. These included two parametric methods: Pearson’s r,and

absolute value (see web site Publication 1) and three nonparametric methods: Kendall ‘st
GDCC, and the modified footrule, or Gini’s method, (David, 1968). Upper and lower

critical points, r,,, and - r,,,, of each null distribution were developed via computer

simulationsfor a = 0.1 and a = 0.05 for samples of size 5 through 100. Tableswere

constructed giving the 0.025, 0.05, 0.95, and 0.975 quantile values.

(Gee, 2002) obtained, by simulations, the null distributions of r(k, Z° - k) for thefive

aforementioned CCs for sample sizes 5 through 100. He included histograms of selected

null distributions with sample sizes of 5, 10, 30, 50, 75, and 100. For the two parametric
CCs, absolute value and Pearson’s 1, with n = 5, the histograms are roughly U-shaped
with apositive bias. Asthe sample sizesincrease, the histograms are |eft-skewed. For the
absolute value CC, the middle 50% of the datafor sample sizen = 30 falsin

(-0.212,0.457) and for n=100in (- 0.239, 0.402) , while for Pearson’s r,, the middle

50% for n=30fallsin (- 0.192, 0.618) and for n=100in (- 0.212,0.547). Sincethe
NPCCstake on afinite number of values, larger sample sizes are required to more readily
see patterns. For sample sizes of 30 and above, both Gini’sand Kendall’st are slightly
skewed to the left while GDCC is more symmetric. For Gini’s, the middle 50% of the data

for samplesize n=30fallsin (- 0.249, 0.458) and for n=100in (- 0.280, 0.410) ; for
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Kendall’st, the middle 50% for n =30 fallsin (- 0.255, 0.370) and for n =100in
(- 0.262, 0.334) ; while for GDCC the middle 50% for n = 30 fallsin (- 0.267, 0.333) and

forn=100in (- 0.260,0.320). The minimum number of simulations used was 100,000.

8. A Numerical Example

An example from (Nemenyi, Dixon, White, and Hedstrom, 1977, p. 240) and (Iglewicz,
1983, pp. 408-410) is used in order to compare the performance of GDCC and Kendall's t
to the robust estimators of scale that appear in these books. It isreadily apparent that these
two NPCCs used as scale estimators are among the best of the robust estimators. Two
samples of SAT scores are used: one sample from arura population with one outlier and a
second sample from an urban population. The primary interest isin the comparison of the
dispersions between the samples. (Iglewicz, 1983, p. 410) shows that the ratio of the
lengths of the boxplots of the urban SAT scoresto the rural SAT scoresis2.01. Let sand
st bethe classical least squares estimates of standard deviation for the rural SAT scores
with and without the outlier. Table 5 contains various estimates of scale for the rural and
urban SAT scores. For the rural scores the sample standard deviation changes from s =

120.37 to st =82.20. The NPCCs are syq = 104.76 and without the outlier 87.24; for
Kendall'st, s =110.04 and changes to 94.70. Both have much smaller changes than the

classical estimates of standard deviation. Asisseen from Table 5, the ratios of the scales
of urban to rural for GDCC is 2.06 and for the Kendall’st, it is 1.82. Thus, the robustness
of the NPCCs leads to reasonable results without worrying about the outlier. This
robustness feature is one of the main reasons for usng NPCCs as location and scale

estimators. The other entriesin the table are taken from Iglewicz with AD, the mean
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absolute deviation; MAD, the median absolute deviation (both deviations from the median);

dr, the difference between upper and lower quartiles; spj, the M biweight estimator of

scale using the biweight estimate of location.

Table5: Comparisons of different scale estimates for the two samples of SAT scores

Estimator Rura Students(1)
S 120.37
s( 82.20
AD 81.62
MAD 47.00
dF 85.00
Shi 98.14
Syd 104.76
5 110.04

Urban Students(2)

176.58

176.58

144.54

149.00

277.00

178.99

215.48

200.06

Ratio (2)/(1)
1.47
2.15
1.77
3.17
3.26
1.82

2.06

1.82

Entriesfor s, s(, AD, MAD, dF, spj are from (Iglewicz, 1983, pp. 410, 424)

9. Summary and Comments

This paper isthe third in a series of papers promoting the use of the geometry induced by a

CC asagenera estimating tool. Inimplementing these procedures, Pearson's 1, for the

most part, parallels least squares procedures. For NPCCs GDCC and Kendall’st, a

computer component is needed with the maximum-minimum tie breaking method first
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suggested in (Gideon and Hollister, 1987). Computer programs can be written fairly easily
for Kendall'st since a closed form regression estimation formula exists. For GDCC a C-
language program has been written which combines the tie breaking procedure for the CC
calculation and ssimple linear regression so that together these can be used in avariety of
situations; e.g, multiple linear regression. It isaremarkably fast routine that makes higher-
level problemsfeasible. An applied user would need a statistical software package to
implement these ideas for general use. For thisto happen, it needs to be ascertained how
the "system of estimation™ provided by a particular CC compares, say, to least squares.
These authors are convinced that since GDCC is an "area equalizer” type estimator, it has
the properties needed in real data analysis. However, the research effort needed to
compare systems is beyond the means of the authors; the authors are thankful for S-Plus that
makes available efficient research languages that have allowed for the progress thus far.

Master's students and afew Ph.D. students have provided inspiration and technical help.

Censored data problems have been minimally studied and the ideas of this paper extend to
such problems. They have not been included because of length considerations and
hopefully will be included in alater paper. The following code is used to find the max and
min upon which an NPCC is computed and then averaged to obtain a unique CC value. The
paired vector datais (x,y). Other computer languages can implement the following

commands;

rank(x) givestheranks of x, usua average ranks used for ties;
order(y,X)  containsindices of dataelements (y) in ascending order (first

integer is subscript of smallest element of y) with y-ties broken by
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vauesin Xx;
n islength( x), the size of the vectors;
<- denotes. evaluate right-hand side and put in left-hand side;

nln<-1:n  putstheintegers 1,2,..,nin nln;
nnl<-n:1  putsthe 1% nintegersin reverse order in nnl;

x[order(y)] givesthe ordering of x that corresponds to the ascending ordered y.

max min
1 xt <- x[order(y,x)] Xr <-n+1-rank(x)
2 uv <- nln[order(xt,n1n)] xt <- x[order(y,xr)]
3 uvl <- n1n[order(xt,nn1)]

The vector uv isnow a permutation of the first n positive integers upon which aNPCC can
be computed. The vector uv corresponds to the ranks of the y-data after the x-data has been
ordered. Compute the NPCC on uv for the max and uv1 for the min and average the two
results; this computation is one of the standard algorithms to compute Kendall'st.
Asanexample, let x=(1,5,6,6,3,6,1,5,4,5, 6, 3, 3) ad
y=(7,2,6,5,6,6,2,7,6,2,6,1, 4) thenuv=(2,12,1,5,7,8,3, 4, 13, 6,9, 10, 11) and
uvl=(13,4,11,5,1,10,12,3,2,9,8,7,6). Kendall'st on uvis0.4102564 and on uvl
iS-0.1794872 and the value of t for the x-y datais the average of these two values which
is0.115385. One can check the logic by hand on the x-y data by sorting and breaking tied
ranks to either maximize or minimize the final result. GDCC = 1/3 for uv and O for uvl so

the averageis 1/6. For Pearson's, r, = 0.2089.
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Thereisone last observation for Kendall’st. Let the usual location two-sample problem

be set up through regression; i.e., 0 and 1 are the x-values and the y-values are the two sets

of data plotted in the vertical directions. Then the slope of the scale regression line (1)

with Kendall’st isthe usual Hodges-L ehmann nonparametric location estimate,

median{x - y;}. Thismay also betrue, in general, for GDCC, but, at thistime, what is
1]

known isthat it was alwaystrue for al the examples examined.
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