
MAC IIci: Miller Asymptotics

Chapter 5: Regression

Section ?: Asymptotic Relationship Between a CC and its Associated Slope Estimates in 
Multiple Linear Regression

The asymptotic null distribution of a CC can be used to determine the asymptotic
distribution of linear combinations of the corresponding slope estimates in a multiple linear
regression.  The normal distribution will be used because, in general, only asymptotic
distributions for CC have been developed for the normal distribution; however, the process is
general and could be used whenever other asymptotic distributions have been derived for other
distributions.  For example, for nonparametric CC the limiting distributions hold over a class of
distributions.  It is known, for example,  that the GDCC has  the same population value and
limiting distribution for the bivariate Cauchy as for the bivariate normal.

The method is first developed for Pearson's r and then extended to NPCC where
GDCC is used as an example.  The full rank multivariate normal model is used with covariance
matrix partitioned as follows into the response and regressor variables.
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 where σ 1
2
 is the variance of the response variate and Σ22  is the

covariance matrix of the regressor variates.  Let Y be the response variate and X the column
vector of regressor variates.  Let H represent the distribution function of this multivariate normal
distribution and β (H)  the parameters in the regression of Y on X.  Then it is known that β (H)

= Σ 22
−1σ12 .  Let  µ  = E(Y) and  µ x  = E(X), a p dimensional vector.  The regression model is

E(Y X = x) = µ + (x − µx ′ ) β(H) .  Let the parameter r(Xi,Y) be the ith element of

  σ12 ,i = 1,2,L, p.   For a sample of size n,  let the columns of data be   (y, x1, x2 ,L,x p)  and
r(x i ,y)  the sample CC of xi and y.  The notation is now set for the development using a Taylor
Series.

Let l   be be a p dimensional column vector of constants and consider the correlation
parameter as a function of β ; f (β ) = r( ′ X l ,Y − ′ X β) .  It is a continuous differentiable function
of β .  In order to relate the null distribution of CC r to linear combinations of the estimated
slopes,  f (β)  will be expanded into a truncated multivariate Taylor Series about β (H) .  Then

the resulting equation will be approximated by data at  
ˆ β , the estimate slopes.  Finally, using the

asymptotic null distribution of r, the asymptotic distribution of  any linear combination of 
ˆ β  will

be found.
For convenience and without loss of generality let  µ = 0 and µ x = 0 .  We start by

determining f (β)  in an explicit form and then taking its partial derivatives with respect to β .

r( ′ X l ,Y − ′ X β ) =
E( ′ X l(Y − ′ X β ))
V( ′ X l)V(Y − ′ X β )

.

E ′ X l(Y − ′ X β ) = ′ l E(XY) − ′ l E(X ′ X )β = ′ l σ12 − ′ l Σ22β .



V( ′ X l) = ′ l Σ22l = a(l),say .
V(Y − ′ X β) = σ1

2 + ′ β Σ22β − 2 ′ β σ12 = b(β),say

Now  β (H ) = Σ22
−1σ12  so that r( ′ X l ,Y − ′ X β (H )) = ′ l σ12 − ′ l Σ22 Σ22

−1σ12 = 0 , and
b(β(H) ) = σ1

2 − ′ σ 12 Σ22
−1σ12 = σres

2  where res stands for residuals.  We now expand

r( ′ X l ,Y − ′ X β ) =
′ l σ12 − ′ l Σ22β

a(l)b(β )
  into a Taylor Series.
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We now are ready to expand  f (β ) = r( ′ X l ,Y − ′ X β)  into a Taylor Series around β (H)  with
just the first partials being used.

f (β ) = r( ′ X l ,Y − ′ X β)= r( ′ X l ,Y − ′ X β (H )) −
′ l Σ22

′ l Σ22lσres
(β − β(H)) .

We now approximate the terms in this series by replacing X by    (x1, x2 ,L,x p)  = x,  Y by y

and evaluate β  at 
ˆ β  where    r(x i , y − x ˆ β ) = 0, i = 1, 2,L, p .  Because of the linearity of the

covariance function, the p equations imply that  r(xl,y − x ˆ β ) = 0 .   Thus, the Taylor Series

becomes  f ( ˆ β ) = r(xl,y − x ˆ β ) = 0 = r(xl,y − xβ(H)) −
′ l Σ22

′ l Σ22lσres
( ˆ β − β(H)) .  Now the

first term on the right hand side has a null distribution since outcomes xl and y − xβ (H)  come
independent random variables  ′ X l  and  Y − ′ X β  .  It is also known       ( reference here) that

nr(xl,y − xβ (H ))  has an asymptotic N(0,1) distribution function.  Consequently,
n ′ l Σ22

′ l Σ22lσres
( ˆ β − β (H))  has the same asymptotic distribution.

In order to relate this result to standard methods, transform from vector l  to vector k

where l = Σ22
−1k ; thus, Σ22l = k  and ′ l Σ22 = ′ k .  Then the quadratic form equality is

′ l Σ22l = ′ k Σ22
−1k .  It follows that

n ′ k ( ˆ β − β (H))

′ k Σ22
−1kσres

 has an asymptotic N(0,1) distribution.  In terms of 
ˆ β − β(H) ,  ′ k ( ˆ β − β(H)

is approximately  N(0,
( ′ k Σ22

−1k )σ res
2

n
) .

This result is now related to the classical least squares or normal theory fixed x multiple
linear regression model.

y = xβ + ε   where ε ~ N(0,σ 2 I)  independent.

Let    x* = (x1
* ,x2

* ,L,x p
* )  where the * indicates that the data have been centered at the means.

Then the sum of squares matrix is  x ′ * x * with ˆ β = (x ′ * x*)−1 x ′ * y  and



V( ˆ β ) = σ2 (x ′ * x*)−1 .  The distribution  of 
ˆ β − β  is multivariate normal: MN(0,V( ˆ β )) .  Thus,

the distribution of  ′ k ( ˆ β −β )  is N(0,σ 2 ′ k (x ′ * x*)−1 k) .
We now connect the two notations between CC and classical methods.

( ′ k 
Σ22

−1

n
k)σ res

2 = ′ k (x ′ * x*)−1 kσ 2 .  In this development n was used rather than the usual    n-p

which would give an unbiased estimate of variance.
(exercise - look at second derivative in the Taylor series)

ASYMPTOTICS FOR rgd

It is known (Gideon, Hollister) that for joint normal random variables W1,W2 the

population value of rgd(W1,W2) is 

2
π

sin −1 ρW1 ,W 2  where ρW1 ,W 2  is the bivariate normal
correlation parameter between W1 and W2.  Thus, for ′ X l  and Y − ′ X β

f1(β ) = rgd ( ′ X l,Y − ′ X β) =
2
π

sin −1 ρ ′ X l,Y− ′ X β .  For normal random variables

r( ′ X l ,Y − ′ X β ) = ρ ′ X l,Y − ′ X β  and so the results of the previous section can be used.  The

Taylor series for f1 (β)  is

f1(β ) = rgd ( ′ X l,Y − ′ X β) = rgd ( ′ X l, Y − ′ X β (H)) +
∂

∂β
rgd ( ′ X l, Y − ′ X β ) β =β (H) (β − β (H))

.

For the partial derivatives 
∂

∂β
rgd( ′ X l,Y − ′ X β ) =

2
π

1

1 −ρ ′ X l,Y − ′ X β
2

∂
∂β

ρ ′ X l,Y − ′ X l β=β ( H ) .

At  β = β(H) , ′ X l  and Y − ′ X β    are independent random variables, so ρ ′ X l,Y− ′ X β ( H) = 0,

and the last term is, as before, 
− ′ l Σ22

′ l Σ22lσres
.  The Taylor series becomes

f1(β ) = rgd ( ′ X l,Y − ′ X β) = rgd ( ′ X l,Y − ′ X β (H)) −
2
π

′ l Σ22

′ l Σ22lσres
(β −β (H)) .

Now solve the associated "normal equations" for data x and y .

  rgd (xi , y − x ˆ β gd ) = 0, i = 1,2,L, p.

ˆ β gd  is a solution vector with  ith individual component 
ˆ β i, gd .  The CC rgd does not have the

same linearity properties that r has and so it is not necessarily true that  rgd (xl,y − x ˆ β gd) = 0;

however,  computer simulations have shown that rgd (x ˆ β gd ,y − x ˆ β gd)  is zero or close to zero.

We shall again approximate the Taylor series above by  their sample counterparts at  
ˆ β gd  and

assume that the left hand side is zero.  The simulations in the example below indicate that the
asymptotic distribution theory is still good.  Again rgd ( ′ X l,Y − ′ X β(H ))  has the null distribution



and its sample equivalent multiplied by n  is nrgd(xl,y − x ˆ β gd )  and this has an approximate
N(0,1) distribution (Gideon, Pyke, Prentice).  It now follows from the Taylor series that
2
π

n
′ l Σ22

′ l Σ22 lσres
( ˆ β gd − β(H))   has an approximate N(0,1) distribution.  Solving this for the

centered slopes  we have ′ l Σ22 ( ˆ β gd − β(H)) ~ N(0,
π2 ′ l Σ22lσ res

2

4n
) .

If again we let  ′ l Σ22 = ′ k ,

′ k ( ˆ β gd − β(H)) ~ N(0,
π 2 ′ k Σ22

−1kσ res
2

4n
) .

As a special case we let k be a vector of 0's except for a 1 in the ith position, the above result

gives  the asymptotic distribution of 
ˆ β i, gd − βi (H)  as 

N(0,
π2σ iiσres

2

4n
)
 where σ

ii = (i ,i)

element of Σ 22
−1

.

An Example

In order to ascertain if the asymptotic results are accurate, some simulations were run
for samples of size n = 10.  They showed that the distribution of the chosen linear combinations
of the estimated β 's was as good for rgd as for r; ie, very similar distributions.  These results are
now outlined.

Let Z be N(0,I3),  
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, and Y = AZ.  Let Y be written as 

Y =
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Then Y ~ N(0,Σ y )  where Σ y = AI3 ′ A =
(3) (2  2)
2
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The general results from the previous work give the following approximate distribution

for 
k =

1
1

 
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 
 ;  ′ k ˆ β = ( ˆ β 1 + ˆ β 2 ), ′ k Σ22

−1k = 2
3.  So the asymptotic distributions for the estimated

slopes from the two regressions are first for r and then for rgd,  (
ˆ β 1 + ˆ β 2 − 4

3) ~ N(0,2 9n)



( ˆ β 1,gd + ˆ β 2,gd − 4
3) ~ N(0,

π2

18n
) .

The population parameters for the CC are

ry x1,x2
=

′ σ 12β(H)
σ1

=
2 2

3
=. 9428 and

r
gd ,y x1 ,x 2

=
2
π

sin −1 r
y x1x2

=
2
π

sin −1(.9428) =. 7836.

One hundred simulations were run with W1 = ˆ β 1 + ˆ β 2  and W2 = ˆ β 1, gd + ˆ β 2, gd  recorded each
time.  A second plot of W1 -vs- W2  and a second  qqplot of W1 -vs- W2 reveal linearity;
thus, the distributions are nearly the same except for the scale factor.  More simulations need to
be run on other cases.

Section: An example of simple and multiple regression with the 1992 Atlanta Braves team
record of 175 games.

Three regression are run with the response variable , y, being the length of a game in hours.  The
first regression , I,   will use the first three of the following four regressor variables.

 x1, the total number of runs by both teams in a game,
x2 , the total number of hits by both teams in a game,
x3 , the total number of runners by both teams left on base in a game
x4 , the total number of pitchers used in a game by both teams.

Thus, the interest is in determing how various conditions in a game affect the length of the game.
The second regression, II, will be a simple linear regression of time, y, on  x4 .  The third
regression, III, will use all four of the regressor variables.  The main purpose is to use the
asymptotic distributions of the slopes to compare least squares (LS) or Pearson regression to
the NPCC Greatest Deviation( GD).  The residual standard deviations are compared and the
GD one is less than that of LS!   Also the multiple CC's  are computed and one partial CC is
computed.  QQ plots on the residuals are discussed.

Although time is a continuous random variable all the regresssor variables are discrete;
so at best for the classical analysis only an approximate multivariate normal distribution would
model the data.  The advantage is using GD would be the usual NP advantage, the distributions
of the statistics hold under a wider class of data distributions.  For example, it is known that GD
has the same population value for a bivariate Cauchy distribution as for a bivariate Normal.  All
classical inference is based on the normal distribution or central limit theorems which give
asymptotic results.

For any CC and in particular for the NPCC  rgd   the regression equations for example
I are   rgd (xi , y − b1x1 − b2x2 − b3x3) = 0,i = 1, 2,3.  Thus, the regressor variables are
uncorrelated with the regression residuals.  The intercept of the regression is obtained by taking
the median of these residuals

b0  = median(y − b1x1 − b2 x2 − b3x3 ) .



The residual SD is obtained by the methods of Chapter 3; ie, a simple linear regression of the
sorted residuals on the ordered N(0,1) quantiles.  Let quan and res represent these ordered
vectors.  Then the estimated SD is   s  taken from the solution to

rgd (quan,res − s* quan) = 0 (a)

For regression example I, Splus and some C routines have been developed that do multiple
regression with GD, the lm command, linear models, was used for LS.

GD: ˆ y = 1.8374 + 0.04908x1 − 0.01022x2 + 0.05479x3
s = ˆ σ = 0. 2518  or (.2518)60 = 15.1 minutes

LS: ˆ y = 1.7179 + 0.04459x1 − 0.01079x2 + 0.06910x3
s = ˆ σ = 0.2919   on 171 degrees of freedom (.2919)60 = 17.5 minutes

Note that  ˆ σ gd < ˆ σ LS .
Before proceeding with more of the regression analysis , the  rgd  and classical LS

normal quantile plots on the regression residuals are compared.  The quantile plot related to
equation (a) above  shows the "regression" line going through the center of about
175 − 16

175
= 90. 9%  of the data while the normal quantile plot connected with LS goes directly

through  
175 − 39

175
= 77.7 % of the data.  That is, about 16 games have GD residuals markedly

away for the straight line plotted through the quantiles whereas for LS, the number of departures
is 39.  As is claimed for GD regression it fits the bulk of the data very well.  It does this, by
making outliers more extreme than LS does, which as is well-known,  is more sensitive to
outliers.  The three most extreme outliers are games 28, 86, and 147 which are extra innings
games of length 16, 10 and 12  respectively.  There are total of 18 extra innings games and
these could all be consider non-standard data or outliers even thought all four regressor
variables relate well to the time of these games.  Deleting the most serious "outliers" would make
LS more like the GD regression.

The asymptotics of the work earlier in this chapter is now illustrated for this example.  The
results are given and then all the calculations behind them are listed.

                                                  Table
     standard errors of the regression coefficients, z scores, and P-values
slopes GD LS GD GD LS LS

SE SE z score p-value z score p-value
b1 0.01318 0.0094 3.72 .0002 4.77 .0000
b2 0.01324 0.0101 -0.77 .44 -1.07 .2867
b3 0.00998 0.0077 5.49 .0000 9.02 .0000



The calculation of the estimated standard errors of the slopes is now given.  From the
text the asymptotic distributions are

LS:  N(βi,
σ iiσ res

n
)      and GD:  N(βi,

σ iiσres π 2

4n
)

where n=175 and for GD  σres
2   is the square of the slope of the GD regression line of the

sorted residuals,  y − ˆ y ,  on N(0,1) quantiles.  For LS the lm, linear models, from Splus was
used, although the σres

2  coming from a QQ plot with Pearson's CC was close to the LS result.

Let Σ22  be the 3x3 covariance matrix of the regressor variables,  and σ ii   denote the ith
diagonal element.

For the GD case Σ22  was obtained by using the GD estimates of the SD's
( ˆ σ i ,i = 1,2,3  obtained similar to equation (a))  and the GD correlation matrix where each GD
correlation was transformed to an estimate of a bivariate normal (or bivariate Cauchy)

correlation by  ˆ ρ = sin (
πrgd

2
) , label this 3x3 matrix Σgd  .   With this in mind,
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ˆ σ 1 0 0
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0 0 ˆ σ 3
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The SD's and correlations needed for all of these calculations are now given.

Basic statistics for our data are given in the following tables.

Table
                                                       Pearson's CC

y x1 x2 x3 x4
y 1 0.4835 0.6053 0.6745 0.7201
x1 1 0.7686 0.2308 0.6025
x2 1 0.6117 0.6279
x3 1 0.4764
x4 1

Table
                         GDCC, upper triangular is  rgd, lower half is (sin πrgd 2)

y x1 x2 x3 x4
y 1 0.3736 0.4138 0.4023 0.4885
x1 (0.5537) 1 0.5690 0.1839 0.4023
x2 (0.6052) (0.7794) 1 0.4080 0.3678
x3 (0.5907) (0.2849) (0.5979) 1 0.2529
x4 (0.6942) (0.5907) (0.5461) (0.3869) 1



Table
                 Estimates of the standard deviations of the regression variables
       LS is the classical least squares, GD is using  a GD fitting on the quantile plot

y x1 x2 x3 x4
LS 0.4420 4.1994 4.7855 4.1457 2.1885
GD 0.4003 3.8825 4.16199 4.0078 2.1468

From these tables using just the x1,x2,x3 part  the covariance matrix can be formed,  Σ22 , and
inverted to obtain for the LS or Pearson and GD the following

For Pearson the calculation gives Σ22
−1 =

0.1785 −0.1570 0.0691
−0.1570 0.2079 −0.1101
0.0691 −0.1101 0.1198
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For GD the calculation gives       Σ22
−1 =

0.1943 −0.1548 0. 0530
−0.1548 0.1962 −0. 0925
0. 0530 −0.0925 0.1114
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Recall that  σ ii   is the notation for the (i,i) element in   Σ22
−1 .  From the asymptotic results

connecting slope estimates and correlation, for Pearson's r

ˆ σ ˆ β i
=

σ iiσres
2

n
=

0.2919
175

σii = (0.02207) σ ii ,  and this equals for

(i=1), 0.009324; (i=2), 0.010063; (i=3), 0.0077.  Note the close agreement with this and the
standard errors direct from  the Splus linear models (lm) command.

For GD ˆ σ ˆ β i
=

π 2σiiσ res
2

4n
=

π 2(0.2518)2

4(175)
σ ii = (0.02990) σ ii , and this equals for

(i = 1),(0. 02990) .1943 = 0. 01318
(i = 2), (0.02990) .1962 = 0. 01324
(i = 3),(0.02990) .1114 = 0. 00998

Note that the inference on the significance of the slopes using P-values is essentially the
same whether  LS or GD regression is used.  The estimated values ˆ β i  are somewhat different
and the smallest  standard error of the regression is GD not LS (15.1 minutes versus 17.5
minutes).  The GD inference does very well for the bulk of the data  but does not fare as well on
the "outliers" as does LS.  However, in inference like this, one probably wants knowledge for
the standard games and not to be swayed by a few unusual games.  The larger z-scores for GD
are the price paid for NP inference, the π 2 4  term in the SD, but the inference is valid over a
larger class of distributions.

Subsection:  example of Partial Correlation



In order to more fully compare LS and GD regression, the partial correlation of Y and
X2 was computed deleting the effects of X1 and X2.  The variable X2 was chosed because the
Pearson and GD correlations with Y are nearly the same and positive but in the Case I
regression the coefficient of X2 is negative.  Recall that  r(y,x2 ) = 0.6053 and
rgd (y, x2 ) = 0.4138  with sin (πrgd / 2) = 0. 6052.   For each CC the regression of Y and X2
on X1 and X3 must be computed in order to obtain residuals and then the correlation of these
Y and X2  residuals give the partial correlations.  The regression are for LS:
ˆ y = 1.60807 + 0.03645x1 + 0.06339x3  and  ˆ x 2 = 3.4463+ 0.7553x1 + 0.5296x3.
Therefore for LS the partial correlation is  r(y − ˆ y , x2 − ˆ x 2 ) = −0.08146.

For GD ˆ y = 1.7982 + 0.04030x1 + 0.05083x3 .  Because X2 is a discrete quantity the
multiple regression Splus-C routine for the regression of X2 on X1 and X3 would not converge.
Therefore an approximation was obtained by continuizing X2.  Random normal increments with
µ = 0 and σ = 0.01  were added to the 175 X2 values.  Call these x22 .  Then the GD
regression of x22  on  x1 and x2  did converge.  The result is
ˆ x 22 = 3.5831 + 0.7632x1 + 0.5022x3 .  Note that this result is similar to the LS output.  To
check how close the approximation is, we note that
rgd (x1, x22 − ˆ x 22 ) = 0   and that also  rgd (x1, x2 − ˆ x 22) = 0.
However,  although
rgd (x3, x22 − ˆ x 22 ) = 0   we have only that  rgd (x3, x2 − ˆ x 22 ) = −0. 0057.  This accuracy is
sufficient for this example.  The partial correlation is given for both y  and x2  and y  with x22 .
r(y − ˆ y , x2 − ˆ x 22) = −0.04022  with   sin (π(−0.04022) / 2 ) = −0.06639  and
r(y − ˆ y , x22 − ˆ x 22 ) = −0.05747  with  sin (π(−0.05747) / 2) = −0.09015.  Thus, it is seen
that the Pearson and GD partial CC of Y and X2 removing the effects of X1 and X3 are very
similar.

Section:  The multiple CC of the regression.

The multiple CC of Y on X1, X2, and X3 is
LS: 

  
r(y, ˆ y ) = 0. 5713 = 0.7558 ,

GD: r(y, ˆ y ) = 0.5805 and  sin (πrgd / 2) = 0. 7906.
This result is in agreement with the SD of the residuals in that GD gives a larger multiple CC
than does Pearson indicating a slightly closer relationship.

Section:  Cases II and III

The regression of Y on just X4 and then on all four regressor variables is now given so
that the LS and GD methods can be compared.  First for case II the CC's are
r(y,x4 ) = 0.7201 and  rgd (y, x4 ) = 0. 4485  with sin (πrgd / 2) = 0. 6942.  This factor X4
has a higher correlation with Y for both CC's than for each of the other three regressor
variables.  Hence, possibly an important predictor variable has been left out of the regression
equation.  Here are all the Case II and III regression equations:



LS:  ˆ y = 1.9167 + 0.1454x4   with   ˆ σ res = 0. 3076,
GD: ˆ y = 1.9000 + 0.1500x4   with  ˆ σ res = 0. 2769.

LS:  ˆ y = 1.5753 + 0.0217x1 − 0.0127x2 + 0.0533x3 + 0.0897x4

with  r(y, ˆ y ) = 0. 6332 = 0.8205  and  ˆ σ res = 0. 2556 on 170 degrees of freedom,
GD: ˆ y = 1.7473 + 0.0457x1 − 0.0310x2 + 0.0567x3 + 0.0718x4

with  rgd (y, ˆ y ) = 0. 5805, sin (πrgd / 2) = 0. 7906, and ˆ σ res = 0. 2280.
In the four variable regression LS has a slightly higher multiple CC but a higher  residual SE,
somewhat a contradiction.  The two slopes with the biggest difference between the two
regressions are for X1 and X2.     The X2 coefficient for GD is over twice as large as for LS,
and if the value of the X2 coefficient for GD had been the LS coefficient, it would have been
very significant as the P-value would have been much lower than  the 0.1514 as given below.
The X3 difference is even greater.  From the "lm" command in Splus the P-values for variables
1,2,3,4 are respectively,  0.0142,  0.1514,  0.0000, and  0.0000

The normal quantile plots on the residuals for the four variable regression now reveal
fewer unusal games, 5 for LS, and 6 for GD, with all the remaining points lying  very close to the
straight line through the points.  However,  the distance from the line to the unusual points is
much greater for GD than for LS.  This explains the main difference in the regression output.
GD obtains a smaller residual SE by not weighting the very few unusual points as much as LS
does. Whether or not the difference in the coefficients and the (0.2280)60=13.6 minutes is
meaningfull to a data analysis compared to (0.2556)60=15.3 minutes depends on  qualitative
thought.  In the current problem on the length of major league baseball games, with the idea that
they are too long, the GD analysis would be more appropriate for this analyst.

For the simple linear regression of Case II the asymptotic inference on the slope is now
given.  The SE of the slope coefficient is calculated.  Because in this case Σ22  is a 1x1 matrix,

the inverse is σ11 =
1

σ4
2   where  σ4

2   is the estimate of the variance of X4 by whatever method

is being used.  The formulas for LS and GD are

Pearson or LS:  ˆ σ ˆ β 
=

σres
2

nσ4
2 =

(0.3086)2

175(4.7894)
= 0.0107

GD: ˆ σ ˆ β 
=

π2σres
2

4nσ4
2 =

π 2 (0.2768)2

(4)175(4.6088)
= 0.0153.

As in the other examples the SE of the slope is higher for the NPCC than for the classical case.
However, the real question is which one is more reliable over a variety of data sets.  Direct from
the Splus "lm" command  ˆ σ ˆ β 

= 0.0107.


