MAC lIci: Miller Asymptotics
Chapter 5: Regression

Section 2. Asymptotic Relationship Between a CC and its Associated Sope Estimatesin
Multiple Linear Regression

The asymptotic null distribution of a CC can be used to determine the asymptotic
digtribution of linear combinations of the corresponding dope estimatesin amultiple linear
regresson. The normd distribution will be used because, in generd, only asymptotic
digtributions for CC have been developed for the norma distribution; however, the processis
general and could be used whenever other asymptotic distributions have been derived for other
digtributions. For example, for nonparametric CC the limiting distributions hold over a class of
digributions. It isknown, for example, that the GDCC has the same population value and
limiting distribution for the bivariate Cauchy as for the bivariate normdl.

The method isfirst developed for Pearson's r and then extended to NPCC where
GDCC isused asan example. Thefull rank multivariate norma modd is used with covariance
matrix partitioned as follows into the response and regressor variables.
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é‘ P:'*lxp+1§ 112 Zzg where S ! is the variance of the response variate and S2 isthe
covariance matrix of the regressor variates. Let Y be the response variate and X the column
vector of regressor variates. Let H represent the distribution function of this multivariate normal

distribution and P (H) the parametersin theregresson of Y on X. Then it isknown that b(H)
= 5_22312. Let M =E(Y)and My = E(X), ap dimensond vector. Theregresson modd is
E(MX =x)=m+(x- m)®(H). Letthe parameter r(X;,Y) bethe ith dement of

S151 =12, P, For asampleof szen, let the columns of databe (VX0 % Xp) g
F(X,Y) the sample CC of x and'y. The notation is now set for the development using a Taylor

Series.
Let| bebeap dimensond column vector of congtants and consider the correlation

parameter as afunction of b f(b)=r(X¢Y - Xb). Itisacontinuous differentiable function
of B In order to rdlate the nul distribution of CC r to linear combinations of the estimated
dopes, f(b) will be expanded into a truncated multivariate Taylor Series about b(H). Then
the resulting equation will be approximated by data a b the esimate dopes. Finaly, usng the
asymptotic null distribution of r, the asymptotic distribution of any linear combingtion of b will
be found.

For convenience and without loss of generdlity let W = 0and Mx =0 wesart by
determining f(b) in an explicit form and then taking its partid derivatives with respect to b,
r(Xe,Y- Xb)= E(XHY - X©)

JVXE)V(Y - Xb)
EX¢(Y - X®) = IE(XY) - | E(XXQb =16, - 16S,,b.




V(X¢) =1¢S,,l =a(l),say.

V(Y - Xb) =s2+b@S,,b - 2b& 1, =b(b),say

Now D(H) =SS, sothat r(Xe,Y- X&(H))= 16, - 16,,S,55,, =0, and
b(b(H))= 512 - sﬂ‘zSé%s 19 = srzas where res stands for resduas. We now expand

& 1, - 16S,5b
X¢,Y- Xb)= —H~—22= inoaTaylor Seri
r( ) Talbb) into a Taylor Series.
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Wenow areready toexpand f(b)=r(X¢)Y - X®) intoaTaylor Series around b(H) with
just the firgt partids being used.
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f(b)=r(XEY - X&)=r(X¢,Y- Xb(H))- ———2Z—(b - b(H)).
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We now aoproximeAtetheterrrBinthissgriesbyrepla:ingx by (%%, Xp) =X, Yhy Y
and evauae P a 0 where (Y- X0) =0,1=12,.D  Bery 100 of the linearity of the

A

covariance function, the p equationsimply that T(XLY - X0) =0 Thyg the Taylor Series
becomes f(b)=r(xl,y- xb)=0=r(xl,y- xb(H))- (b - b(H)). Now the

first term on the right hand side has anull distribution since outcomes X! and ¥ - XB(H) come
independent random variables X¢ and Y - X& . Itisdsoknown  ( reference here) that

Jnr(x,y - %0 (H)) hasan asymptotic N(0,1) distribution function. Consequently,
Jnies,,
Vl qszz' Sres

In order to reate this result to sandard methods, transform from vector | to vector k
where ! = S2K  thug Szl =K and 165,, =k¢. Then the quadratic form equaity is
16S,,] =kSyk . It follows that
Jnkdb - b (H))

VKB2KS 1o

isapproximately  N(O,

(6 - b(H)) hasthe same asymptotic distribution.

has an asymptotic N(0,1) distribution. Intermsof P - B(H) | kb - b(H)
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This result is now related to the classicd least squares or norma theory fixed x multiple
linear regresson mode.
y=xb+e where®~ N(0,;5°1) jndependent.

Let X=X X0 Xp) where the * indicates thet the data have been centered & the means.

Then the sum of squares matrix is x*¢x* with b = (x*¢x*) 1x*¢y and



V(b) = s2(x*¢x*) L. Thedigribution of b - P ismultivariate normal: MN(O, V(D)) Thus,
the digribution of k&b - b) is N(0,s 2k&x *¢x*) 1k).
We now connect the two notations between CC and classica methods.
-1
(k(tS—rz]2 k)s 2 = k&x *¢x*) 1ks 2. Inthis development n was used rather than theusual  n-p

which would give an unbiased estimate of variance.
(exercise - look at second derivative in the Taylor series)

ASYMPTOTICSFOR rgd

It is known (Gideon, Hollister) that for joint normal random variables W1,W2 the
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population velue of rgg(W1,W2) is P * where " wiw: jsthe bivariate norma
correlation parameter between W1 and W2. Thus, for X¢ and Y - X®b

Wy, W.

f1(0) =rge(X¢,Y - X®) :ggn'lfxw-xm- For normal random varigbles

r(Xe,Y- X®)=r x¢y.- xe adsotheresultsof the previous section can be used. The
Taylor seriesfor f,(b) is

f1(0) =rgq(X&,Y - Xb) =rgq(Xe,Y - ch(H))+1?T—brgd(X¢,Y- X(b)|b:b(H)(b- b (H))

| I | 2 1 T
For thepa’tld derivatives T[_b rgd(X(lI,Y - XQ) =— ﬂ_br XeY - X¢|b:b(H) .
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At b=b(H) x¢ and Y- X are independent random variables, SO T x ¢ v. x &(H) = O,

: -1 :
and the last term is, as before, ———22— . The Taylor series becomes
J Sl o

_ _ 2 16y )
f1(b) =gy (XE,Y - X®) =rgq(X¢,Y- X (H)) - T (b - b(H)).

Now solve the associated "normal equations' for datax and y .

Fga(X, Y- X0g) =01 =12+, p.

69d is asolution vector with ithindividual component Biga. Thecc rgd does not have the

same linearity propertiesthat r has and so it is not necessarily true that Foa (XY - X0gq) = 0;
however, computer smulations have shown that Mg (Dga.Y - XDgq) iszero or closeto zero.

We shdl again approximate the Taylor series above by their sample counterparts at By ad
assume that the left hand Sdeis zero. The smulations in the example below indicate that the
asymptotic distribution theory istill good. Again rgq (X¢,Y - Xd(H)) hasthe null distribution



and its sample ecuivalert multiptied by ¥ is YNt Y = XBaa) 4 this has an approximete
N(0,1) distribution (Gideon, Pyke, Prentice). It now follows from the Taylor seriesthat

2 16S ~
= JIn—2— (b, - b(H)) hasan approximate N(0,1) distribution. Solving thisfor the
P 18618 s J

> p2leS,,ls 2
centered slopes we have [ 655, (byq - b(H)) ~ N(O’ﬁ)'
If againwelet |6S,, =k,

2 - 2
~ kdSHaks
kbgg - b(H)) ~ N(0, 2222 res 425 es )y,

Asaspecid casewe let k be avector of O's except for alin the ith position, the above result
pZS “Sris

~ N2> ) P
gives the asymptotic distribution of biga - 0 (H) 5 4an " whereS =(i0)

dement of S,
An Example

In order to ascertain if the asymptotic results are accurate, some simulations were run
for samples of Sze n=10. They showed that the distribution of the chosen linear combinations

of the estimated P 'swas as good for rgd asfor r; ie, very smilar digtributions. These resuits are
now outlined.
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, b(H)=Sxush =657+ and s =57 - 51282259‘2—}/3,sothat
730
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YIX=x~N(Ex +=%,,=
The generd results from the previous work give the following approximate distribution
CH)
k

for 1% k& = (b, +b,)k6sik = ¥3. Sothe asympiotic distributions for the estimted
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sopes from the two regressons are first for r and then for rgg, (b, +b, /3) N(O’/9n)



~ ~ 2
(bl,gd + b2,gd - % - N(O!%)
The population parameters for the CC are
,,/s b(H -
= £ ):Zfz.9428and

Y|X11X2 S,

_2. 2., _
Foaybaxe = psn Maxe = p sn~7(.9428) =.7836.

One hundred smulationswere run with Wi =b1+ 0, gng W, =Dy g D2 recorded each
time. A second plot of W1 -vs- W2 and asecond qgplot of W1 -vs- W2 reved linearity;
thus, the digtributions are nearly the same except for the scale factor. More smulations need to

be run on other cases.

Section: An example of smple and multiple regression with the 1992 Atlanta Braves team
record of 175 games.

Three regresson are run with the response variable , y, being the length of agamein hours. The
firs regresson, I, will usethefirg three of the following four regressor variables.

X1, the total number of runs by both tesmsin agame,

Xo , the total number of hits by both teamsin agame,

X3, the total number of runners by both teams left on base in agame

X4 , the total number of pitchers used in agame by both teams.
Thus, the interest isin determing how various conditions in a game affect the length of the game.
The second regression, 1, will be asmple linear regression of time, y, on X, . Thethird
regression, 11, will usedl four of the regressor variables. The main purposeisto usethe
asymptotic distributions of the dopes to compare least squares (LS) or Pearson regression to
the NPCC Greatest Deviation( GD). The resdual standard deviations are compared and the
GD oneislessthanthat of LS Also the multiple CC's are computed and one partid CC is
computed. QQ plots on the resduals are discussed.

Although time is a continuous random varigble dl the regresssor variables are discrete;
S0 a best for the dassicd andyss only an gpproximate multivariate norma distribution would
mode the data. The advantage is using GD would be the usual NP advantage, the distributions
of the statistics hold under awider class of data distributions. For example, it is known that GD
has the same population vaue for abivariate Cauchy didtribution asfor abivariate Normd. Al
classcd inference is based on the norma distribution or centrd limit theorems which give
asymptotic results.

For any CC and in particular for the NPCC r the regression equations for example
lare rgq(X,Y- bXg - boXs - bex3) = 0,i =1,2,3. Thus, the regressor variables are
uncorrelated with the regresson resduals. The intercept of the regression is obtained by taking
the median of these resduas

by = median(y - bpx - bX% - baxg).



The resdud SD is obtained by the methods of Chapter 3; ie, asmple linear regresson of the
sorted residuds on the ordered N(0,1) quantiles. Let quan and res represent these ordered
vectors. Then the estimated SD is s taken from the solution to

rqga(Quan,res - s* quan) =0 @

For regresson example |, Splus and some C routines have been developed that do multiple
regression with GD, the Im command, linear models, was used for LS.

GD:  §=1.8374 +0.04908x, - 0.01022x, +0.05479x,
s=$ =0.2518 or (.2518)60 = 15.1 minutes

LS.  y=1.7179+0.04459%; - 0.01079x, + 0.06910x5

_s§= S =0.2919 on 171 degrees of freedom (.2919)60 = 17.5 minutes
Note that Sgd <S|s-

Before proceeding with more of the regression andlysis, the r gy and classical LS

norma quantile plots on the regression residuas are compared. The quantile plot related to
equation (a) above showsthe "regresson” line going through the center of about

17;—516 =90.9% of the datawhile the norma quantile plot connected with LS goes directly
through 175-39 _ 77796 of the data. That is, about 16 games have GD residuas markedly

away for the sraight line plotted through the quantiles whereas for LS, the number of departures
i539. Asisclamed for GD regression it fitsthe bulk of the data very well. It doesthis, by
making outliers more extreme than LS does, which asiswell-known, ismore sendtiveto
outliers. The three most extreme outliers are games 28, 86, and 147 which are extrainnings
games of length 16, 10 and 12 respectively. There aretotd of 18 extrainnings games and
these could al be consder non-standard data or outliers even thought al four regressor
vaiablesrdae wdl to the time of these games. Ddeting the most serious "outliers' would make
LS more like the GD regresson.

The asymptotics of the work earlier in this chapter is now illustrated for thisexample. The
results are given and then dl the calculations behind them are listed.

Table
standard errors of the regression coefficients, z scores, and P-values
dopes GD LS GD GD LS LS
SE SE Z score p-vaue Z score p-vaue
b1 0.01318 0.0094 3.72 .0002 4.77 .0000
b2 0.01324 0.0101 -0.77 44 -1.07 .2867

b3 0.00998 0.0077 5.49 .0000 9.02 .0000



The cdculation of the estimated standard errors of the dopesis now given. From the
text the asymptotic distributions are
slig siis p2
LS N(bi,TraS and GD: N(bi,%)

wheren=175 and for GD s rzes is the square of the dope of the GD regresson line of the
sorted residudls, y- y, onN(0,1) quantiles. For LSthelm, linear models, from Splus was
used, dthough the s rzes coming from a QQ plot with Pearson's CC was close to the LS resullt.
Let S,, bethe 3x3 covariance matrix of the regressor varigbles, and s " denote the ith
diagond eement.

For the GD case S,, was obtained by using the GD estimates of the SD's
(S;,i =12,3 obtained similar to equation (8)) and the GD correlation matrix where each GD
correlation was transformed to an estimate of a bivariate norma (or bivariate Cauchy)

R r
corraion by r :s'n(p—zgd),label this 3x3 matrix Sgq . With thisin mind,
&, 0 06 a&; 0 06
szzzgo S, oisgdgo s, 0.
€0 0 sz €0 0 sso
The SD's and corrdations needed for al of these caculations are now given.

Basic gatigtics for our data are given in the following tables.

Teble
Pearson's CC

y X1 X2 X3 X4
y 1 0.4835 0.6053 0.6745 0.7201
X1 1 0.7686 0.2308 0.6025
X2 1 0.6117 0.6279
X3 1 0.4764
X4 1
Table

GDCC, upper triangular is rgd, lower haif is (sn pr 4/ 2)

y X1 X2 X3 X4
y 1 0.3736 0.4138 0.4023 0.4885
X1 (0.5537) 1 0.5690 0.1839 0.4023
X2 (0.6052) (0.7794) 1 0.4080 0.3678
X3 (0.5907) (0.2849) (0.5979) 1 0.2529
X4 (0.6942) (0.5907) (0.5461) (0.3869) 1



Table
Edtimates of the slandard deviations of the regression variables
LSisthe dasscd least squares, GD isusing a GD fitting on the quantile plot

y X1 X2 X3 X4
LS 0.4420 4.1994 4.7855 4.1457 2.1885
GD 0.4003 3.8825 4.16199 4.0078 2.1468

From these tables using just the x1,x2,x3 part the covariance matrix can beformed, S, , and
inverted to obtain for the LS or Pearson and GD the following

x0.1785 -0.1570 0.0691¢
For Pearson the calculation gives S52 = §-01570 02079 -0.1101:.
€0.0691 -0.1101 011989

01943 -01548 0.0530 %
For GD the caculation gives ~ Sj3 = §-01548 01962 -0.0925;
€0.0530 -0.0925 0.1114 @

Recdl that s isthe notation for the (i) dement in S'Z%. From the asymptotic results
connecting dope estimates and correlation, for Pearson'sr

. slis2 02019 [ ; .
S~ = = +¥s" =(0.02207)¥s " , and thisequasfor
b, n J175 ( ) ™

(i=1), 0.009324; (i=2), 0.010063; (i=3), 0.0077. Note the close agreement with this and the
gandard errors direct from the Splus linear modes (Im) command.

2112 2 2
ForGD § :‘/ 54 nS res :J P (43'1275538) JsT =(0.02990)v's T , and this equals for
(i =1),(0.02990)/.1943 = 0.01318
(i =2),(0.02990).1962 = 0.01324
(i =3),(0.02990)/ 1114 = 0.00998

Note that the inference on the significance of the dopes using P-valuesis essentialy the
samewhether LSor GD regresson isused. The estimated values b; are somewnhet different

and the smallest standard error of the regresson isGD not LS (15.1 minutes versus 17.5
minutes). The GD inference does very well for the bulk of the data but does not fare as well on
the"outliers' asdoes LS. However, in inference like this, one probably wants knowledge for
the standard games and not to be swayed by afew unusud games. The larger z-scoresfor GD
are the price paid for NP inference, the p 2/4 term in the SD, but the inferenceis vdid over a
larger class of digtributions.

Subsection: example of Partid Corrdation



In order to more fully compare LS and GD regression, the partia corrdation of Y and
X2 was computed deleting the effects of X1 and X2. The variable X2 was chosed because the

Pearson and GD corrdaionswith Y are nearly the same and positive but in the Case |
regresson the coefficient of X2 isnegative. Recdl that r(y,x,)=0.6053 and

rga (¥, %) = 0.4138 with sn(pr gy / 2) = 0.6052. For each CC the regression of Y and X2
on X1 and X3 must be computed in order to obtain resduas and then the correlation of these
Y and X2 residuas give the partid corrdations. Theregression are for LS.

y=1.60807 +0.03645x, +0.06339x3 and %, =3.4463+ 0.7553%; + 0.5296X.

Therefore for LS the partia corrdationis r(y- Y, X, - X,) = - 0.08146.

For GD y=1.7982+0.04030x; + 0.05083x5. Because X2 isadiscrete quantity the
multiple regresson Splus-C routine for the regression of X2 on X1 and X3 would not converge.
Therefore an approximation was obtained by continuizing X2. Random normd increments with
m=0ands = 0.01 wereadded to the 175 X2 vaues. Cdl these x%,. Thenthe GD
regressonof X, on x; and X, did converge. Theresultis
Xop = 3.5831+0.7632% +0.5022x5. Notethat thisresultis Smilar to the LS output. To
check how close the approximation is, we note that
Fod (X, X2 - %) =0 andthat dso rgq (X, %, - Xg,) = 0.

However, dthough

Fgd (X3, X2 = ¥2) =0 wehaveonly that rgyq(Xs, X, - Xp,) = -0.0057. Thisaccuracy is
sufficient for thisexample. The partid corrdation isgiven for both y and X, and y with X, .
r(y- Y, % - Xp) =-0.04022 with sin(p(-0.04022)/2)=-0.06639 ad

(Y- Y, Xpg - Xpp)=-0.05747 with sn(p(-0.05747) / 2) =-0.09015. Thus, itisseen
that the Pearson and GD partid CC of Y and X2 removing the effects of X1 and X3 are very
amilar.

Section: The multiple CC of the regresson.

The multiple CC of Y on X1, X2, and X3 is
LS r(y,y)=+/0.5713 =0.7558,
GD: r(y,y) =0.5805 and sin(pr gq / 2) = 0.7906.

Thisresult isin agreement with the SD of the resdudsin that GD gives alarger multiple CC
than does Pearson indicating adightly closer relaionship.

Section: Cases |l and 111

Theregresson of Y on just X4 and then on al four regressor variablesis now given so

that the LS and GD methods can be compared. First for case |l the CC's are
r(y,Xs) =0.7201 and rgq (Y, Xs) = 0.4485 with Sn(pryy / 2) = 0.6942. Thisfactor X4

has a higher corrdaion with Y for both CC's than for each of the other three regressor
variables. Hence, possibly an important predictor variable has been Ieft out of the regresson
equation. Here are dl the Case Il and 111 regression equations.



LS y=19167+0.1454x, with S, =0.3076,
GD: y=1.9000+0.1500%, with S =0.2769.

LS y=15753+0.0217x; - 0.0127x, +0.0533x3 +0.0897x,

with r(y,y) = ¥0.6332 = 0.8205 and S = 0.2556 on 170 degrees of freedom,
GD: y=1.7473+0.0457x, - 0.0310x, + 0.0567x3 + 0.0718x,

with g4 (y,y) = 0.5805, dn(pr g / 2) = 0.7906, and S s = 0.2280.
In the four variable regresson LS has adightly higher multiple CC but ahigher resdud SE,

somewhat a contradiction. The two dopes with the biggest difference between the two
regressonsarefor X1 and X2. The X2 coefficient for GD isover twice aslarge asfor LS,

and if the vaue of the X2 coefficient for GD had been the LS coefficient, it would have been

very sgnificant as the P-value would have been much lower than the 0.1514 as given below.
The X3 differenceis even greater. From the"Im" command in Splus the P-values for variables

1,2,3,4 are respectively, 0.0142, 0.1514, 0.0000, and 0.0000

The norma quantile plots on the resduas for the four varigble regression now reved
fewer unusa games, 5 for LS, and 6 for GD, with dl the remaining pointslying very closeto the
graight line through the points. However, the distance from the line to the unusud pointsis
much greater for GD than for LS. This explains the main difference in the regresson outpu.
GD obtainsagmadler resdua SE by not weighting the very few unusua pointsasmuch asLS
does. Whether or not the difference in the coefficients and the (0.2280)60=13.6 minutes is
meaningfull to a data andys's compared to (0.2556)60=15.3 minutes depends on quditative
thought. In the current problem on the length of mgor league basebal games, with the idea that
they are too long, the GD analysis would be more appropriate for this anayst.

For the smple linear regresson of Case |1 the asymptotic inference on the dope is now

given. The SE of the dope coefficient is calculated. Becauseinthiscase S,, isalx1 matrix,
theinverseiss ! = 5_12 where sf is the estimate of the variance of X4 by whatever method
4

isbeing used. Theformulasfor LSand GD are

2 2
Pearsonor LS: s = Sres =J (03089 _ 4, 0107
ns2 Y 1754.7894)
2.2 2 2
ep:§; = [P0 :‘/ P-(0.2768" _ ) 1155,
ans? Y (4)175(4.6088)

Asin the other examples the SE of the dopeis higher for the NPCC than for the classica case.
However, the real question iswhich oneis more reliable over avariety of datasets. Direct from
the Splus"Im" command Sp = 0.0107.



