Course: M 361 Sec. 01 (CRN 33402) 3 cr., Spring 2021
Discrete Optimization
T, Th 9:30–10:50am in MATH 103
& on Zoom (meeting ID: 993 2559 0589 passcode: 150926)

Instructor: Mark Kayll
Econtact: mark.kayll@umontana.edu
umontana.zoom.us/j/6948539958 (for Office Hours)
hs.umt.edu/math/people/default.php?s=Kayll

Office: MATH 209
406.243.2403
(tentative) (open for all course matters, including DSS accomm.)

Hours: T, Th 2:00–2:50pm & by appointment

Prerequisites: one of M 162 (Applied Calculus), M 172 (Calculus II) or M 182 (Honors Calculus II);
M 221 (Intro Linear Algebra) or M 225 (Intro Discrete Math) are recommended;
or consent of instructor.

Students should have background appropriate for junior-level mathematical studies. Though
assignments will not be completely theoretical, some homework problems will ask for proofs.

Text: Discrete Mathematics: Elementary and Beyond, L. Lovász, J. Pelikán, and

Important Dates: Martin Luther King Day
last day to add w/o instructor consent
last day to drop
or select Audit grade option
Presidents’ Day holiday
Student Breaks
last day to drop via Add/Δ/Drop
link and avoid ‘WP’ or ‘WF’
last day to add/drop by petition
last class meeting (during finals)
Monday, 18 January;
Wednesday, 20 January (5pm);
Monday, 1 February (5pm);
Monday, 15 February;
Thursday, 4 March, Tuesday, 16 March;
Thursday, 18 March (5pm);
Friday, 23 April (5pm);
Monday, 26 April 8:00–10:00am.

Description: How many ways can you arrange your math textbooks on a shelf? How about rearrange them (none in its original spot)? How many ways can the billiard balls in a game of eight-ball wind up in the pockets? How about snooker? How can you use graph theory to sequence RNA chains? Or efficiently deliver the mail? These sorts of questions fall into the realm of discrete mathematics. M 361 introduces the techniques of discrete optimization, namely understanding and optimizing discrete structures. It’s intended for both mathematics and non-mathematics majors. For background, we begin with a study of elementary discrete mathematics, that is, basic combinatorics and graph theory. In the latter half of the course, we consider various applications such as graph algorithms, minimum spanning trees, matching, and other related topics. Against the backdrop of the lectures, that steer the course, students can expect to gain some facility for the topics covered through working exercises and problems.

Learning outcomes: The ‘official’ outcomes below are reflected in the description above.

- Demonstrate the techniques of discrete optimization and their applications;
- Explain applications such as graph algorithms, minimum spanning trees, graph coloring, and matching theory;
- Develop appropriate mathematical models for ‘real-world’ problems and find solutions using the techniques above.

Accommodation: The University of Montana assures equal access to instruction through collaboration between students with disabilities, instructors, and Disability Services for Students. If you have a disability that adversely affects your academic performance, and you have not already registered with Disability Services, please contact Disability Services in Lommasson Center 154 or 406.243.2243. The instructor will work with you and Disability Services to provide an appropriate modification.

Assessment: Course grades are based on homework assignments, two term tests, and a final exam. Traditional letter grades will be assigned using the +/− system (see UM catalog at catalog.umt.edu/academics/policies-procedures). UM’s policy onIncomplete grades will be followed (see UM catalog).

(over)
Homework Assignments are set regularly, roughly every two weeks. A (possibly improper) subset of the assigned problems will be graded. Homework is submitted electronically on gradescope.com, either in PDF or JPG format from your device. The course number is 224803, with Entry Code N8PG76. You’ll receive an email invite at your official UM email address; follow the instructions to link to Gradescope and get started. Students are responsible for compiling their own ‘solution sets’, comprised of their own submissions, augmented by notes from meetings with other students and with the instructor.

I urge students from the outset to get into the habit of staying on schedule with reading and homework. This helps to maximize the material absorbed in class, meaning less effort in preparing for tests.

<table>
<thead>
<tr>
<th>Tentative grading schedule</th>
<th>Item</th>
<th>Date(s)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>12 January — 22 April</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Test # 1</td>
<td>Thursday, 18 February</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Test # 2</td>
<td>Thursday, 8 April</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>Final exam</td>
<td>Monday, 26 April 8:00–10:00am</td>
<td>40%</td>
<td></td>
</tr>
</tbody>
</table>

Teaching modality: This is a hyflex course; i.e., some students attend face-to-face while others join synchronously via Zoom. Class meetings will be recorded on Zoom so that all students can revisit desired segments.

Moodle pages: These are located at moodle.umt.edu/course/view.php?id=39084. Students should check the Moodle site regularly to stay in tune with the course flow (announcements, homework, grade book, etc.).

General Remarks

On homework: Please use complete sentences, proofread, and polish your work prior to submission. You’re encouraged to type homework solutions unless your handwriting is clear. You may work with others on homework problems, and you’re encouraged to do so.

Solutions should be written down privately in your own words.

If you use an important idea of someone else, then please acknowledge that person by giving an appropriate citation in your write-up. This professional courtesy will not affect your grade.

On exams: As noted above, there are two in-class tests and a final exam. The latter will be cumulative with a slight emphasis on the material not covered by the in-class tests.

On make-ups: Make-ups for tests will not be given unless there is a valid excuse cleared with the instructor prior to the test. At least your most detrimental assignment will be dropped; thus, there are no homework make-ups.

On deadlines: Any stated deadlines will be firm; please don’t ask for extensions.

On electronic devices: Cell phones must be silenced during class meetings and office hours. Use of a cell phone during a test for any purpose other than as a calculator is grounds for earning a zero score on that test.

On coronavirus: Attendance will be recorded to support contact tracing. All students must follow UM’s face covering policy; see www.umt.edu/policies/browse/facilities-security/covid-19-face-covering-policy. With mask use required in the classroom, consuming food or beverages is not allowed because these require mask removal.

On conduct: All students need to be familiar with the Student Conduct Code; it can be found in the ‘A to Z Index’ on the UM home page. All students must practice academic honesty. Academic misconduct is subject to an academic penalty by the course instructor and/or a disciplinary sanction by the university.

Additional References


Combinatorics is the most fundamental, and hence the most important, branch of mathematics, since it deals with FINITE structures, and the world is finite.

Doron Zeilberger, *Board of Governors Professor of Mathematics*
Rutgers University