Syllabus: Math 461 Practical Big Data Analytics. CRN: 72840

Instructor: Brian Steele
Office: Math 314
Phone: 243-5396
email: brian.steele@umontana.edu
Office hours: MW 2 pm, T 1 pm & by appointment

Course Format: Meetings: Monday, Wednesday, Friday 9:00-9:50 a.m. Class time is split (75/25) between lecture and individual and small group work on programming and algorithm development.

Learning Outcomes

1. Understand the theory and foundations of data reduction and information extraction (e.g., associative statistics and data mapping).

2. Develop understanding and practical experience regarding reduction of massive data sets and data streams.

3. Understand the theory and mechanics of distributed computing.

4. Ability to formulate and implement algorithms for processing massively large data sets. Ability to compute histograms, correlation matrices, and linear regression estimators using massively large data sets.

5. Understand the objectives of multiple regression, methods for fitting models, and examining model assumptions. Derive estimators from first principles. Ability to carry out and interpret hypothesis tests. Understand the details of fitting qualitative and quantitative predictors.

6. Proficiency using Python, Hadoop/MapReduce and R.

7. Proficiency in data analytic algorithm design.

Course Content: Algorithms are the machinery behind the data analytics (the subject matter of the course). To be good at data analytics, one must be competent at programming and have experience with the data and the algorithms of data science. To be expert at data analytics requires an understanding of the foundations and principles behind the algorithms. Why? Applying the algorithms to real problems often requires adapting existing algorithms and creating new ones. To get to the point where innovation is not intimidating but instead an opportunity for creativity, students will work with a set of prototypical algorithms that span much of data analytics. Graduate students will derive and develop key components of the algorithms. Algorithms will be implemented in Python or R and applied to practical problems involving publicly available data sets.

M 561(G) co-convenes with M 461(U). Course content differs however. In particular, M 561 involves theoretical and foundational learning outcomes absent from M 461. Principally, graduate students will derive estimators from theoretical principles and create innovations to core algorithms.

We shall cover most, but not all of the material in chapters 1 through 10 of the textbook. The main topics are:

1. Data mappings and the concepts of data reduction. Similarity measures and distance metrics. List, set, and dictionary comprehension.

2. Scalable algorithms and associative statistics. Computing univariate and multivariate statistics from massively large data sets.

4. Linear regression for prediction (using R).
5. Data visualization.
7. k-nearest neighbor prediction
8. Multinomial Naive Bayes prediction

Textbook: *Algorithms for Data Science (ISBN-10: 3319457950)*

Prerequisites: STAT 341, and one of M 221 or M 273, or consent of instructor.

Homework: Homework exercises emphasizing applications of the algorithms will be assigned most weeks. Occasionally, a quiz will replace the weekly homework assignment. Students are to complete approximately 4 tutorials per month. Tutorials are oriented toward gaining proficiency in programming and algorithm design.

Grading: Your course grade will be based on homework, tutorials, and a final. Students are responsible for completing 4 tutorials (usually) per month (due on the last day of each month except December). Homework assignments and tutorials are worth 25% and 50% of the course grade, respectively. The final exam is worth 25%.

Final exam: The final exam will be an analysis of a data set. You’ll have 5 days days to complete it. It will be due at the scheduled meeting time of the final: Wednesday, December 11, 12 p.m.